首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of thrombolysis by monotherapy with either tPA or proUK have not lived up to expectations. Since these natural activators are inherently complementary, this property can be utilized to a synergistic advantage; and yet, this has undergone little evaluation. ProUK is no longer available because at pharmacological concentrations it converts to UK in plasma. Therefore, a single site proUK mutant, M5, was developed to address this problem and was used in this study. Fibrinolysis was measured using preformed fluoresceinated 24 h old clots in a plasma milieu rather than by the standard automated method, because proUK/M5 is sensitive to inactivation by thrombin and activation by plasmin. The shortest 50% clot lysis time that could be achieved by tPA or M5 alone was determined: mean times were 55 and 48 minutes respectively. These bench marks were matched by 6% of the tPA monotherapy dose combined with 40% that of M5: mean lysis time 47 minutes with less associated fibrinogenolysis. Results showed that the tPA effect was limited to initiating fibrinolysis which was completed by M5 and then tcM5. Plasma C1-inhibitor inhibited fibrinogenolysis by M5, providing protection from side effects not available for proUK. In conclusion, by utilizing the complementary properties and sequential modes of action of each activator, more efficient fibrinolysis with less non-specific effects can be achieved than with traditional monotherapy. In vivo validation is needed, but in a previous clinical trial using a similar combination of tPA and proUK (5% and 50% monotherapy doses) very promising results have already been obtained.  相似文献   

2.
3.
Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke.  相似文献   

4.
Intracerebral haemorrhage (ICH) is a severe neurological disorder caused by bleeding within the brain tissue. Inflammation has been implicated in ICH pathogenesis and is a potential therapeutic target for ICH. Haemin, an activator of haem oxygenase‐1 (HO‐1), rapidly increases HO‐1 protein expression and activity and has been shown to distinctly affect anti‐inflammatory functions after central nervous system (CNS) injury. However, less is known about the mechanisms that underlie the anti‐inflammatory effects of haemin in aged rats post‐ICH. Here, we performed microarray analysis to identify miRNAs that respond strongly to HO‐1 regulation in ICH rats and found that miR‐21‐5p induced the most significant change. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and Gene Ontology (GO) analysis, we focused on dual‐specificity phosphatase 8 (DUSP8) from the predicted miR‐21‐5p targets. Luciferase reporter assays confirmed that miR‐21‐5p bound directly to DUSP8. MiR‐21‐5p upregulation in vitro downregulated DUSP8 expression. Importantly, intracerebroventricularly injecting antagomir for miR‐21‐5p (A‐miR‐21‐5p), which was used to inhibit miR‐21‐5p in aged ICH rats, significantly reduced the neurological defects, repaired cognitive impairment, alleviated blood–brain barrier (BBB) permeability, inhibited neuronal apoptosis posthaemorrhage and accelerated haematoma absorption. In addition, serum miR‐21‐5p levels were notably elevated in patients relative to healthy individuals and were correlated with National Institutes of Health Stroke Scale (NIHSS) scores and clinical outcomes. In summary, A‐miR‐21‐5p increased HO‐1 expression in cerebral haematomas, thus eliciting the DUSP8‐modulated perifocal neuroprotective effect of haemin. MiR‐21‐5p with haemin therapy may be a potential therapy post‐ICH.  相似文献   

5.
Ischaemic stroke is caused by occlusive thrombi in the cerebral vasculature. Although tissue-plasminogen activator (tPA) can be administered as thrombolytic therapy, it has major limitations, which include disruption of the blood-brain barrier and an increased risk of bleeding. Treatments that prevent or limit such deleterious effects could be of major clinical importance. Activated protein C (APC) is a natural anticoagulant that regulates thrombin generation, but also confers endothelial cytoprotective effects and improved endothelial barrier function mediated through its cell signalling properties. In murine models of stroke, although APC can limit the deleterious effects of tPA due to its cell signalling function, its anticoagulant actions can further elevate the risk of bleeding. Thus, APC variants such as APC(5A), APC(Ca-ins) and APC(36-39) with reduced anticoagulant, but normal signalling function may have therapeutic benefit. Human and murine protein C (5A), (Ca-ins) and (36-39) variants were expressed and characterised. All protein C variants were secreted normally, but 5-20% of the protein C (Ca-ins) variants were secreted as disulphide-linked dimers. Thrombin generation assays suggested reductions in anticoagulant function of 50- to 57-fold for APC(36-39), 22- to 27-fold for APC(Ca-ins) and 14- to 17-fold for APC(5A). Interestingly, whereas human wt APC, APC(36-39) and APC(Ca-ins) were inhibited similarly by protein C inhibitor (t½ - 33 to 39 mins), APC(5A) was inactivated ~9-fold faster (t½ - 4 mins). Using the murine middle cerebral artery occlusion ischaemia/repurfusion injury model, in combination with tPA, APC(36-39), which cannot be enhanced by its cofactor protein S, significantly improved neurological scores, reduced cerebral infarct area by ~50% and reduced oedema ratio. APC(36-39) also significantly reduced bleeding in the brain induced by administration of tPA, whereas wt APC did not. If our data can be extrapolated to clinical settings, then APC(36-39) could represent a feasible adjunctive therapy for ischaemic stroke.  相似文献   

6.
BackgroundMechanisms of fibrin-specificity of tissue plasminogen activator (tPA) and recombinant staphylokinase (STA) are different, therefore we studied in vitro the possibility of the synergy of their combined thrombolytic action.MethodsThrombolytic effects of tPA, STA and their combinations were measured by lysis rate of human plasma clot and side effects were evaluated by decreasing in fibrinogen, plasminogen and α2-antiplasmin levels in the surrounding plasma at 37 °C in vitro.ResultsSTA and tPA induced dose- and time-dependent clot lysis: 50% lysis in 2 h was obtained with 30 nM tPA and 75 nM STA, respectively. At these concentrations, tPA produced greater degradation of plasma fibrinogen than STA. According to a mathematical analysis of dose–response curves by the isobole method, combinations of tPA and STA caused a considerable synergistic thrombolytic effect. The simultaneous and sequential combinations of tPA (< 4 nM) and STA (< 35 nM) induced a significant fibrin-specific synergistic thrombolysis, which was more pronounced in 2 h at simultaneous combinations than at sequential addition of STA after 30 min of tPA action. Simultaneous combination of 2.5 nM tPA and 15 nM STA showed a maximal 3-fold increase in thrombolytic effect compared to the expected total effect of the individual agents. Sequential combinations caused a lower depletion of plasma proteins compared to simultaneous combinations.ConclusionsThe simultaneous and sequential combinations of tPA and STA possessed synergistic fibrin-specific thrombolytic action on clot lysis in vitro.General significanceThe results show that combined thrombolysis may be more effective and safer than thrombolysis with each activator alone.  相似文献   

7.
An investigation was made to determine whether it is possible to attract tissue plasminogen activator (tPA) to the site of a thrombus by means of an antibody with affinites for both tPA and fibrin. A bispecific antibody conjugate was constructed by cross-linking two monoclonal antibodies: one specific for tPA, the other specific for fibrin. The bispecific antibody enhanced fibrinolysis by capturing tPA at the site of a fibrin deposit. In an in vitro quantitative fibrinolysis assay, the relative fibrinolytic potency of tPA bound to the bispecific antibody was 13 times greater than that of tPA and 200 times greater than that of urokinase. When fibrin was treated with the bispecific antibody before being mixed with tPA, the relative fibrinolytic potency of tPA was enhanced 14-fold. This capture also occurred when the concentration of tPA present in the assay was less than the concentration of tPA present in normal human plasma. In a human plasma clot assay, samples containing both the bispecific antibody and tPA exhibited significantly more lysis than did samples containing tPA alone. In spite of the increased clot lysis effected by the presence of bispecific antibody, there was no significant increase in fibrinogen or alpha 2-antiplasmin degradation at equal tPA concentrations. The ability of the bispecific antibody to concentrate exogenous tPA in vivo was then examined in the rabbit jugular vein model. Systemic infusion of a small amount of tPA (10,000 units) produced no significant increment in thrombolysis over the level of spontaneous lysis (14 +/- 8%). However, the simultaneous infusion of 10,000 units of tPA and 2 mg of bispecific antibody resulted in 42 +/- 14% (p less than 0.01) lysis. These results suggest that a molecule capable of binding both fibrin and tPA with high affinity could enhance thrombolysis in the circulation by capturing endogenous tPA.  相似文献   

8.
Spence MJ  Streiff R  Day D  Ma Y 《Cytokine》2002,18(1):26-34
Oncostatin M (OSM) is a glycoprotein cytokine that is produced by activated T-lymphocytes, monocytes, and macrophages. In a DNA synthesis assay, OSM reduced tritiated thymidine incorporation by 53% in Calu-1 lung carcinoma cells. Radiolabeled cDNAs from untreated Calu-1 cells and 30-h OSM-treated cells were used to probe duplicate nylon membrane cDNA expression arrays. This study revealed OSM-mediated expression of mRNAs encoding tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1). Northern blot analysis showed that the steady-state level of tPA mRNA is nearly undetectable in Calu-1 cells. Exposure of these cells to OSM for 30 h increased tPA mRNA expression by 20-fold and PAI-1 mRNA expression by 5-fold. Exposure of these cells to other gp130 receptor family cytokines, including leukemia inhibitory factor (LIF), interleukin-6 (IL-6), and IL-11, do not significantly affect DNA synthesis or induction of tPA/PAI-1. Western blot studies demonstrated that OSM mediates a marked increase in secretion of the tPA protein. Secreted tPA was present in the conditioned medium almost exclusively as tPA/PAI-1 complexes. Inhibitor studies demonstrated that OSM-mediated induction of tPA and PAI-1 mRNAs is largely dependent upon activation of the MEK1/2 pathway. The JAK3/STAT3 pathway potentially serves a secondary role in these regulatory events.  相似文献   

9.
Human vascular smooth muscle cells (VSMC) bind tissue plasminogen activator (tPA) specifically, saturably, and with relatively high affinity (K(d) 25 nM), and this binding potentiates the activation of cell-associated plasminogen (Ellis, V., and Whawell, S. A. (1997) Blood 90, 2312-2322). We have observed that this binding can be efficiently competed by DFP-inactivated tPA and S478A-tPA but not by tPA inactivated with H-D-Phe-Pro-Arg-chloromethyl ketone (PPACK). VSMC-bound tPA also exhibited a markedly reduced inhibition by PPACK, displaying biphasic kinetics with second-order rate constants of 7. 5 x 10(3) M(-1) s(-1) and 0.48 x 10(3) M(-1) s(-1), compared with 7. 2 x 10(3) M(-1) s(-1) in the solution phase. By contrast, tPA binding to fibrin was competed equally well by all forms of tPA, and its inhibition was unaltered. These effects were shown to extend to the physiological tPA inhibitor, plasminogen activator inhibitor 1. tPA.plasminogen activator inhibitor 1 complex did not compete tPA binding to VSMC, and the inhibition of bound tPA was reduced by 30-fold. The behavior of the various forms of tPA bound to VSMC correlated with conformational changes in tPA detected by CD spectroscopy. These data suggest that tPA binds to its specific high affinity site on VSMC by a novel mechanism involving the serine protease domain of tPA and distinct from its binding to fibrin. Furthermore, reciprocally linked conformational changes in tPA appear to have functionally significant effects on both the interaction of tPA with its VSMC binding site and the susceptibility of bound tPA to inhibition.  相似文献   

10.
Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1β and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application.  相似文献   

11.
The experiments have been performed on 216 Wistar rats to examine anti-ischaemic action of the 1-hydroxy-2,2,6,6-tetramethyl-piperidine derivative (I), whose antioxidant properties were, earlier shown for model systems. Introduction of I (10(-4) M) into the perfusion medium and the subsequent storage (37 degrees C) of isolated liver was shown to decrease the accumulation of lipid peroxidation products (MDA). Compound I administrated (5 x 10(-6)-10(-5) M) in perfuse medium of isolated (Langendorff method) and ischemized (30 min, 37 degrees C) heart improves contractile function (Pmax) and decreases end-diastolic pressure at postischaemic period. In vivo injection of I increases (12 mg/kg, i.p.) the number of rats survival after sublethal time (2.5 h) of liver total ischaemia, increase (35 mg/kg, i.p.) the number of rats survival and improves parameters of heart function after ischaemic shock (6 h ischaemia and reperfusion of limbs). The analog of I, corresponding amine, possessing no antioxidant properties also fails to exhibit any anti-ischaemic effect.  相似文献   

12.

Background

Little is known about the effects of induced pluripotent stem cell (iPSC) treatment on acute cerebral inflammation and injuries after intracerebral hemorrhage (ICH), though they have shown promising therapeutic potentials in ischemic stoke.

Methods

An ICH model was established by stereotactic injection of collagenase VII into the left striatum of male Sprague-Dawley (SD) rats. Six hours later, ICH rats were randomly divided into two groups and received intracerebrally 10 μl of PBS with or without 1×106 of iPSCs. Subsequently, neural function of all ICH rats was assessed at days 1, 3, 7, 14, 28 and 42 after ICH. Inflammatory cells, cytokines and neural apoptosis in the rats’ perihematomal regions, and brain water content were determined on day 2 or 3 post ICH. iPSC differentiation was determined on day 28 post ICH. Nissl+ cells and glial fibrillary acidic protein (GFAP)+ cells in the perihematoma and the survival rates of rats in two groups were determined on post-ICH day 42.

Results

Compared with control animals, iPSCs treatment not only improved neurological function and survival rate, but also resulted in fewer intracephalic infiltrations of neutrophils and microglia, along with decreased interleukin (IL)-1β, IL-6 and tumour necrosis factor-alpha (TNF-α), and increased IL-10 in the perihematomal tissues of ICH rats. Furthermore, brain oedema formation, apoptosis, injured neurons and glial scar formation were decreased in iPSCs-transplanted rats.

Conclusions

Our findings indicate that iPSCs transplantation attenuate cerebral inflammatory reactions and neural injuries after ICH, and suggests that multiple mechanisms including inflammation modulation, neuroprotection and functional recovery might be involved simultaneously in the therapeutic benefit of iPSC treatment against hemorrhagic stroke.  相似文献   

13.
14.
Human thyroid cells in culture take up and organify (125)I when cultured in TSH (acting through cAMP) and insulin. They also secrete urokinase (uPA) and tissue-type (tPA) plasminogen activators (5-100 IU/10(6)cells/day). TSH and insulin both decreased secreted PA activity (PAA), uPA and tPA protein and their mRNAs. Autocrine fibroblast growth factor increased secreted PAA and inhibited thyroid cell (125)I uptake. Epidermal growth factor (EGF) and the protein kinase C (PKC) activator, TPA significantly increased PAA and inhibited thyroid differentiated function, (TPA > EGF). For TPA, effects were rapid, increased PAA secretion and decreased (125)I uptake being seen at 4 h whereas for EGF, a 24 h incubation was required. qRT-PCR showed significantly increased mRNA expression of uPA with lesser effects on tPA. Aprotinin, which inhibits PAA, increased (125)I uptake but did not abrogate the effects of TPA and EGF. The MEKK inhibitor, PD98059 partially reversed the effects of EGF and TPA on PAA, and largely reversed the effects of EGF but not TPA on differentiated function. PKC inhibitors bisindoylmaleimide 1, and the specific PKCbeta inhibitor, LY379196 completely reversed the effects of TPA on (125)I uptake and PAA whereas EGF effects were unaffected. TPA inhibited follicle formation and this effect was blocked by LY379196 but not PD98059. We conclude that in thyroid cells, MAPK activation inversely correlates with (125)I uptake and directly correlates with PA expression, in contrast to the effects of cAMP. TPA effects on iodide metabolism, dissolution of follicles and uPA synthesis are mediated predominantly through PKCbeta whereas EGF exerts its effects through MAPK but not PKCbeta.  相似文献   

15.
At least two forms of plasminogen activators which crossreacted with antiserum against tissue plasminogen activator (tPA) have been found in human small intestine homogenates. One of these activities has very slow mobility on Sephadex G-200 and is presumably a degraded form of tPA. The other moved very fast and was dispersed on gel filtration matrices, and probably represents aggregates of tPA with some other materials. Whereas 1 M NaCl, 1% Triton X-100 or 1 M potassium thiocyanate was unable to break up these aggregates, the high molecular weight components co-migrating with tPA could be separated from tPA by 4 M guanidine-HCl.  相似文献   

16.
The experiments described in this paper were designed to examine the specific binding of tissue plasminogen activator (tPA) to cultured human aortic endothelial (HAE) cells. When 125I-labelled tPA was incubated with the cells at 4 degrees C, binding was found to plateau within 90 min after incubations were begun. Binding was saturable and the bound enzyme dissociated from the sites with a half-time of approx. 48 min. Scatchard analyses were performed using tPA molecules isolated from human melanoma and colon cells as well as from C127 and Chinese hamster ovary cells that had been transfected with the human tPA gene. These enzymes showed very similar binding characteristics in spite of the fact that they differ substantially in the types of sugars which comprise their side chains. Neither the chainedness of the molecules (one-chain or two-chain) nor the sites at which they are glycosylated (type I or type II) appear to affect their ability to interact with binding sites. The tPA molecules were found to have an average equilibrium dissociation constant of (1.15 +/- 0.10) x 10(-9) M and HAE cells appeared to have a single, homogeneous population of independent binding sites present at a concentration of (1.57 +/- 0.13) x 10(6) sites per cell. Lowering the pH of the binding buffer from 7.4 to 6.5 resulted in a reversible increase in specific binding of between 2-fold and 7-fold depending upon the particular preparation of cells. Preincubation of tPA with plasminogen activator inhibitor 1 (PAI-1) was found to have little effect on binding, suggesting that tPA interacts at sites distinct from surface-bound PAI-1. No evidence for either internalization or degradation of tPA was observed in assays run at 37 degrees C. This suggests that, like urokinase, tPA remains on cell surfaces for an extended period of time.  相似文献   

17.
目的:研究Ghrelin对大鼠脑出血后脑水肿及脑组织中基质金属蛋白酶-9(MMP-9)表达的影响。方法:选取雄性SD大鼠80只,随机分为对照组(NC组)20只、假手术组(SHAM组)20只、脑出血组(ICH组)20只、Ghrelin治疗组(Ghrelin组)20只。利用自体动脉血注入法建立大鼠脑出血模型;Ghrelin组于建立脑出血模型后经股静脉注射Ghrelin 10 nmol/Kg·d。分别于12 h、24 h、3d、5 d、7 d时间点根据Berderson评分法评估各组大鼠神经系统功能;利用干湿重法测定各组大鼠脑组织含水量;利用蛋白质免疫印迹法(WB)检测脑组织中MMP-9表达情况。结果:在12 h、24 h、3 d、5 d、7 d,ICH组、Ghrelin组大鼠Berderson评分及脑组织含水量高于NC组、SHAM组(P0.05);在5 d、7 d,ICH组大鼠Berderson评分及脑组织含水量高于Ghrelin组(P0.05)。WB结果表明在12 h、24 h、3 d、5 d、7 d,ICH组大鼠脑组织中MMP-9的表达均高于NC组、SHAM组(P0.05);Ghrelin组MMP-9的表达在12 h、24 h、3 d高于NC组、SHAM组(P0.05),在5 d、7 d,与NC组、SHAM组无明显差异(P0.05);在5 d、7 d,ICH组MMP-9表达高于Ghrelin组(P0.05)。结论:在本研究中,Ghrelin可以在5 d后降低脑出血大鼠脑组织中MMP-9的表达程度,从而减轻脑水肿,改善脑出血大鼠神经功能。  相似文献   

18.
We have previously reported that angiotensin receptor blockade reduces reperfusion hemorrhage in a suture occlusion model of stroke, despite increasing matrix metalloproteinase (MMP-9) activity. We hypothesized that candesartan will also decrease hemorrhage associated with delayed (6 h) tissue plasminogen activator (tPA) administration after embolic stroke, widening the therapeutic time window of tPA. Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (eMCAO) and treated with either candesartan (1 mg/kg) alone early at 3 h, delayed tPA (10 mg/kg) alone at 6 h, the combination of candesartan and tPA, or vehicle control. Rats were sacrificed at 24 and 48 h post-eMCAO and brains perfused for evaluation of neurological deficits, cerebral hemorrhage in terms of hemoglobin content, occurrence rate of hemorrhage, infarct size, tissue MMP activity and protein expression. The combination therapy of candesartan and tPA after eMCAO reduced the brain hemorrhage, and improved neurological outcome compared with rats treated with tPA alone. Further, candesartan in combination with tPA increased activity of MMP-9 but decreased MMP-3, nuclear factor kappa-B and tumor necrosis factor-α expression and enhanced activation of endothelial nitric oxide synthase. An activation of MMP-9 alone is insufficient to cause increased hemorrhage in embolic stroke. Combination therapy with acute candesartan plus tPA may be beneficial in ameliorating tPA-induced hemorrhage after embolic stroke.  相似文献   

19.
《Chronobiology international》2013,30(10):1383-1389
Circadian rhythm interactions of hemostatic factors can modify tissue plasminogen activator (tPA) effects. We assess the relationship of the time frame of intravenous tPA administration with the outcome of patients with acute ischemic stroke (AIS). We studied 135 consecutive patients with AIS and transcranial duplex documented middle cerebral artery (MCA) occlusion treated with intravenous tPA. Complete recanalization was defined as total improvement on thrombolysis in brain ischemia (TIBI) grades 2?h after tPA infusion. Clinical response was evaluated by the modified Rankin scale at 90 days. We determined plasminogen activator inhibitor-1 (PAI-1) levels in 33 patients with available plasma samples before treatment. Our results are follows: 92 (68.1%) patients were treated in the diurnal (9:00–21:00) and 43 (31.8%) in the nocturnal period (21:00–9:00). Complete recanalization was recorded in 52/135 (38.5%) patients. Both the rate of complete recanalization (45.6% vs. 23.2%; p?=?.01) and good clinical outcome (64.1% vs. 44.2%; p?=?.02) were significantly higher in the group of diurnal tPA administration compared with those treated in the nocturnal period. The adjusted odds ratio (OR) of diurnal tPA treatment for complete MCA recanalization was 2.37 (95% confidence interval [CI], 1.02–5.52; p?=?.045). Diurnal tPA infusion significantly improved the overall distribution of scores on the modified Rankin scale, as compared with nocturnal treatment (OR, 2.07; 95% CI, 1.16–4.64 by ordinal regression analysis). Low PAI-1 levels were associated with complete recanalization but did not significantly differ between the two time frames. In conclusion, diurnal administration of tPA is associated with complete MCA recanalization and better functional outcome at 90 days in patients with AIS. (Author correspondence: , )  相似文献   

20.
Plasminogen activator inhibitor 1 (PAI-1) was purified from medium conditioned by cultured bovine aortic endothelial cells by successive chromatography on concanavalin A Sepharose, Sephacryl S-200, Blue B agarose, and Bio-Gel P-60. As shown previously for conditioned media (C. M. Hekman and D. J. Loskutoff (1985) J. Biol. Chem. 260, 11581-11587) the purified PAI-1 preparation contained latent inhibitory activity which could be stimulated 9.4-fold by sodium dodecyl sulfate and 45-fold by guanidine-HCl. The specific activity of the preparation following treatment with 0.1% sodium dodecyl sulfate was 2.5 X 10(3) IU/mg. The reaction between purified, guanidine-activated PAI-1 and both urokinase and tissue plasminogen activator (tPA) was studied. The second-order rate constants (pH 7.2, 35 degrees C) for the interaction between guanidine-activated PAI-1 and urokinase (UK), and one- and two-chain tPA are 1.6 X 10(8), 4.0 X 10(7), and 1.5 X 10(8) M-1 S-1, respectively. The presence of CNBr fibrinogen fragments had no affect on the rate constants of either one- or two-chain tPA. Steady-state kinetic analysis of the effect of PAI-1 on the rate of plasminogen activation revealed that the initial UK/PAI-1 interaction can be competed with plasminogen suggesting that the UK/PAI-1 interaction may involve a competitive type of inhibition. In contrast, the initial tPA/PAI-1 interaction can be competed only partially with plasminogen, suggesting that the tPA/PAI-1 interaction may involve a mixed type of inhibition. The results indicate that PAI-1 interacts more rapidly with UK and tPA than any PAI reported to date and suggest that PAI-1 is the primary physiological inhibitor of single-chain tPA. Moreover, the interaction of PAI-1 with tPA differs from its interaction with UK, and may involve two sites on the tPA molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号