首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A targeted virtual screen to the N-helix hydrophobic pocket on HIVgp41 was performed using DOCK followed by re-ranking with a new footprint-based scoring function which employed native gp41 C-helix residues as a reference. Of ca. 500,000 small molecules screened, 115 were purchased, and 7 hits were identified with favorable binding (K(i)), cell-cell fusion (IC(50)), and cytotoxicity (CC(50)) profiles. Three of the seven active compounds would not have been discovered without the use of the footprints, demonstrating the utility of the method for structure-based design when a known reference compound or substrate is available.  相似文献   

2.
The gp41 subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein mediates the fusion of viral and host cell membranes. As the HIV-1 enters the host cells, the 2 helical regions, HR1 and HR2, in the ectodomain of gp41 can form a 6-helix bundle, which brings the viral and target cell membranes to close proximity and serves as an attractive target for developing HIV-1 fusion inhibitors. Now, there are several cell- and molecule-based assays to identify potential HIV-1 fusion inhibitors targeting gp41. However, these assays cannot be used universally because they are time-consuming, inconvenient, and expensive. In the present study, the authors expressed and purified GST-HR121 and C43-30a proteins that were derived from the HIV-1 gp41 ectodomain region. GST-HR121 has a function similar to the HR1 peptide of gp41, whereas C43-30a is an HR2-derived peptide that added 50 amino acid residues (aa) in the N-terminal of C43. Further research found they could interact with each other, and a potential HIV-1 fusion inhibitor could inhibit this interaction. On the basis of this fact, a novel, rapid, and economic enzyme-linked immunosorbent assay was established, which can be developed for high-throughput screening of HIV-1 fusion inhibitors.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41 plays an important role in the virus entry. During the process of fusion between the viral and target cell membranes, the N- and C-terminal heptad repeat (HR) regions of the gp41 extracellular domain associate to form a 6-helical bundle, corresponding to the fusion-active gp41 core. Any compound that blocks the gp41 6-helix bundle formation between the N- and C-peptides, which are derived from the N- and C-terminal HR regions, respectively, may inhibit HIV-1 mediated membrane fusion. Based on this principle, we previously established a sandwich enzyme-linked immunosorbent assay (ELISA) for drug screening by using the N-peptide N36 and the C-peptide C34 and a monoclonal antibody (NC-1) which specifically recognizes the gp41 6-helix bundle. In the present study, a fluorescence-linked immunosorbent assay (FLISA) was developed by using fluorescein isothiocyanate (FITC)-conjugated C34 to replace C34 and by directly detecting fluorescence intensity instead of more complicated enzymatic reaction. Compared with the sandwich ELISA, this FLISA has similar sensitivity and specificity, but it is much more rapid, economic and convenient. Using an Integrated Robotic Sample Processing System, this assay has been applied for high-throughput screening of organic compounds on a large scale for HIV-1 fusion inhibitors targeting gp41.  相似文献   

4.
A series of substituted biphenyl ethylene ether compounds has been designed to target the gp41 N-trimer in order to inhibit formation of the six-helical bundle that represents the end state of gp41-mediated viral fusion. A size exclusion HPLC based helical bundle formation (HBF) assay was developed to evaluate in vitro inhibitory affinity of the inhibitors. The most potent compound 1 had an IC50 of 31 μM. The binding of compound 1 to the proposed hydrophobic pocket of gp41 was further validated by site-directed peptide mutagenesis experiments.  相似文献   

5.
Infection by human immunodeficiency virus type I requires the fusogenic activity of gp41, the transmembrane subunit of the viral envelope protein. Crystallographic studies have revealed that fusion-active gp41 is a "trimer-of-hairpins" in which three central N-terminal helices form a trimeric coiled coil surrounded by three antiparallel C-terminal helices. This structure is stabilized primarily by hydrophobic, interhelical interactions, and several critical contacts are made between residues that form a deep cavity in the N-terminal trimer and the C-helix residues that pack into this cavity. In addition, the trimer-of-hairpins structure has an extensive network of hydrogen bonds within a conserved glutamine-rich layer of poorly understood function. Formation of the trimer-of-hairpins structure is thought to directly force the viral and target membranes together, resulting in membrane fusion and viral entry. We test this hypothesis by constructing four series of gp41 mutants with disrupted interactions between the N- and C-helices. Notably, in the three series containing mutations within the cavity, gp41 activity correlates well with the stability of the N-C interhelical interaction. In contrast, a fourth series of mutants involving the glutamine layer residue Gln-653 show fusion defects even though the stability of the hairpin is close to wild-type. These results provide evidence that gp41 hairpin stability is critical for mediating fusion and suggest a novel role for the glutamine layer in gp41 function.  相似文献   

6.
7.
Ou W  Silver J 《Journal of virology》2005,79(8):4782-4792
A conserved structural motif in the envelope proteins of several viruses consists of an N-terminal, alpha-helical, trimerization domain and a C-terminal region that refolds during fusion to bind the N-helix trimer. Interaction between the N and C regions is believed to pull viral and target membranes together in a crucial step during membrane fusion. For several viruses with type I fusion proteins, C regions pack as alpha-helices in the grooves between N-helix monomers, and exogenously added N- and C-region peptides block fusion by inhibiting the formation of the six-helix bundle. For other viruses, including influenza virus and murine leukemia virus (MLV), there is no evidence for comparably extended C-region alpha-helices, although a short, non-alpha-helical interaction structure has been reported for influenza virus. We tested candidate N-helix and C-region peptides from MLV for their ability to inhibit cell fusion but found no inhibitory activity. In contrast, intracellular expression of the MLV N-helix inhibited fusion by efficiently blocking proteolytic processing and intracellular transport of the envelope protein. The results highlight another mechanism by which the N-helix peptides can inhibit fusion.  相似文献   

8.
HIV-1 fusion with its target cells is mediated by the glycoprotein 41 (gp41) transmembrane subunit of the viral envelope glycoprotein (ENV). The current models propose that gp41 undergoes several conformational changes between the apposing viral and cell membranes to facilitate fusion. In this review we focus on the progress that has been made in revealing the dynamic role of the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) regions within gp41 to the fusion process. The involvement of these regions in the formation of the gp41 pre-hairpin and hairpin conformations during an ongoing fusion event was mainly discovered by their derived inhibitory peptides. For example, the core structure within the hairpin conformation in a dynamic fusion event is suggested to be larger than its high resolution structure and its minimal boundaries were determined in situ. Also, inhibitory peptides helped reveal the dual contribution of the NHR to the fusion process. Finally, we will also discuss several developments in peptide design that has led to a deeper understanding of the mechanism of viral membrane fusion.  相似文献   

9.
To infect target cells, HIV-1 employs a virally encoded transmembrane protein (gp41) to fuse its viral envelope with the target cell plasma membrane. We describe the gp41 ectodomain as comprised of N- and C-terminal subdomains, each containing a heptad repeat as well as a fusogenic region, whose organization is mirrored by the intervening loop region. Recent evidence indicates that the gp41 directed fusion reaction proceeds to initial pore formation prior to gp41 folding into its low energy hairpin conformation. This implies that exposed regions of the gp41 ectodomain are responsible for the bulk of the fusion work, probably through direct protein-membrane interactions. Prevalent fusion models contend that the gp41 ectodomain initially interacts with the target cell surface through its highly hydrophobic N terminus, which is believed to insert into the target membrane, thereby linking the virus to the target cell. This arrangement allows the N-terminal subdomain to interact with the target cell surface, whereas the C-terminal subdomain remains proximal to the virion, allowing interaction with the viral envelope. The composition of the viral envelope and the target cell surface differ due to the virus budding from raft microdomains. We show here that constructs corresponding to the C-terminal subdomain specifically destabilize ordered and cholesterol rich membranes (33 molar %), whereas the N-terminal subdomain is more effective in fusing both unordered cholesterol-free membranes and those containing lower amounts of cholesterol (10 molar %). Moreover we show that, in the context of the C-terminal subdomain, the heptad repeat contributes helical structure, which may describe the enhanced inhibitory effect of the C-terminal subdomain relative to the C-terminal heptad repeat (C34) alone. Our results are discussed in light of recent findings that showcase the role of exposed gp41 regions in effecting membrane fusion.  相似文献   

10.
Human immunodeficiency virus (HIV) entry into a host cell requires the fusion of virus and cellular membranes that is driven by interaction of the viral envelope glycoproteins gp120 and gp41 (gp120/gp41) with CD4 and a coreceptor, typically either CXCR4 or CCR5. The stoichiometry of gp120/gp41:CD4:CCR5 necessary to initiate membrane fusion is not known. To allow an examination of early events in gp120/gp41-driven membrane fusion, we developed a novel real-time cell-cell fusion assay. Using this assay to study fusion kinetics, we found that altering the cell surface density of gp120/gp41 affected the maximal extent of fusion without dramatically altering fusion kinetics. Collectively, these observations are consistent with the view that gp120/gp41-driven membrane fusion requires the formation of a threshold number of fusion-active intercellular gp120/gp41:CD4:CCR5 complexes. Furthermore, the probability of reaching this threshold is governed, in part, by the surface density of gp120/gp41.  相似文献   

11.
Biron Z  Khare S  Quadt SR  Hayek Y  Naider F  Anglister J 《Biochemistry》2005,44(41):13602-13611
The HIV-1 envelope glycoprotein gp41 is responsible for viral fusion with the host cell. The fusion process, as well as the full structure of gp41, is not completely understood. One of the strongest inhibitors of HIV-1 fusion is a 36-residue peptide named T-20, gp41(638-673) (Fuzeon, also called Enfuvirtide or DP-178; residues are numbered according to the HXB2 gp160 variant) now used as an anti HIV-1 drug. This peptide also contains the immunogenic sequences that represent the full or partial recognition epitope for the broadly neutralizing human monoclonal antibodies 2F5 and 4E10, respectively. Due to its hydrophobicity, T-20 tends to aggregate at high concentrations in water, and therefore the structure of this molecule in aqueous solution has not been previously determined. We expressed a uniformly 13C/15N-labeled 42-residue peptide NN-T-20-NITN (gp41(636-677)) and used heteronuclear 2D and 3D NMR methods to determine its structure. Due to the additional gp41-native hydrophilic residues, NN-T-20-NITN dissolved in water, enabling for the first time determination of its secondary structure at near physiological conditions. Our results show that the NN-T-20-NITN peptide is composed of a mostly unstructured N-terminal region and a helical region beginning at the center of T-20 and extending toward the C-terminus. The helical region is found under various conditions and has been observed also in a 13-residue peptide gp41(659-671). We suggest that this helical conformation is maintained in most of the different tertiary structures of the gp41 envelope protein that form during the process of viral fusion. Accordingly, an important element of the immunogenicity of gp41 and the inhibitory properties of Fuzeon may be the propensity of specific sequences in these polypeptides to assume helical structures.  相似文献   

12.
We have identified the membranotropic regions of the full sequence of the HIV gp41 envelope glycoprotein by performing an exhaustive study of membrane rupture, phospholipid-mixing and fusion induced by two 15-mer gp41-derived peptide libraries from HIV strains HIV_MN and HIV_consensus_B on model membranes having different phospholipid compositions. The data obtained for the two strains and its comparison have led us to identify different gp41 membranotropic segments in both ecto- and endodomains which might be implicated in viral membrane fusion and/or membrane interaction. The membranotropic segments corresponding to the gp41 ectodomain were the fusion domain, a stretch located on the N-heptad repeat region adjacent to the fusion domain, part of the immunodominant loop, the pre-transmembrane domain and the transmembrane domain. The membranotropic segments corresponding to the gp41 endodomain were mainly located at some specific parts of the previously described lentivirus lytic sequences. Significantly, the C-heptad repeat region and the Kennedy sequence located in the ectodomain and in the endodomain, respectively, presented no membranotropic activity in any model membrane assayed. The identification of these gp41 segments as well as their membranotropic propensity sustain the notion that different segments of gp41 provide the driving force for the merging of the viral and target cell membranes as well as they help us to define those segments as attractive targets for further development of new anti-viral compounds.  相似文献   

13.
We have identified the membranotropic regions of the full sequence of the HIV gp41 envelope glycoprotein by performing an exhaustive study of membrane rupture, phospholipid-mixing and fusion induced by two 15-mer gp41-derived peptide libraries from HIV strains HIV_MN and HIV_consensus_B on model membranes having different phospholipid compositions. The data obtained for the two strains and its comparison have led us to identify different gp41 membranotropic segments in both ecto- and endodomains which might be implicated in viral membrane fusion and/or membrane interaction. The membranotropic segments corresponding to the gp41 ectodomain were the fusion domain, a stretch located on the N-heptad repeat region adjacent to the fusion domain, part of the immunodominant loop, the pre-transmembrane domain and the transmembrane domain. The membranotropic segments corresponding to the gp41 endodomain were mainly located at some specific parts of the previously described lentivirus lytic sequences. Significantly, the C-heptad repeat region and the Kennedy sequence located in the ectodomain and in the endodomain, respectively, presented no membranotropic activity in any model membrane assayed. The identification of these gp41 segments as well as their membranotropic propensity sustain the notion that different segments of gp41 provide the driving force for the merging of the viral and target cell membranes as well as they help us to define those segments as attractive targets for further development of new anti-viral compounds.  相似文献   

14.
The human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein gp41 is an important mediator of viral entry into host cells. Previous studies showed that the virucidal protein cyanovirin-N (CV-N) bound to both gp120 and gp41, and that this binding was associated with its antiviral activity. We constructed an HTS assay based on the interaction of europium-labeled CV-N with recombinant glycosylated gp41 ectodomain to support identification of small-molecule mimetics of CV-N that might be developed as antiviral drug leads. Primary screening of over 107,000 natural product extracts in the assay yielded 347 confirmed hits. Secondary assays eliminated extracts that bound directly to labeled CV-N or for which the simple sugars mannose and N-acetylglucosamine blocked the interaction with gp41 (lectin activity). Extracts were further prioritized based on anti-HIV activity and other biological, biochemical, and chemical criteria. The distribution of source organism taxonomy of active extracts was analyzed, as was the cross-correlation of activity between the CV-N-gp41 binding competition assay and the previously reported CV-N-gp120 binding competition assay. A limited set of extracts was selected for bioassay-guided fractionation.  相似文献   

15.
HIV-1跨膜蛋白gp41是HIV-1包膜与靶细胞膜的融合过程中的关键蛋白,是理想的HIV-1融合抑制剂靶点。为开展以gp41为靶点的抑制剂筛选,以HIV-1 B亚型病毒基因为模板,通过PCR、酶切、连接等方法构建得到gp41 5-helix与6-helix重组质粒,转入大肠杆菌BL21(DE3)进行表达,经变性和复性后亲和层析纯化蛋白。经SDS-PAGE鉴定,纯化后蛋白纯度较高。本研究还通过非变性凝胶电泳证明gp41 5-helix与C-多肽衍生物T-20存在相互作用,为下一步药物筛选模型的建立奠定了基础。  相似文献   

16.
Protein-protein interaction surfaces can exhibit structural plasticity, a mechanism whereby an interface adapts to mutations as binding partners coevolve. The HIV-1 envelope glycoprotein gp120-gp41 complex, which is responsible for receptor attachment and membrane fusion, represents an extreme example of a coevolving complex as up to 35% amino acid sequence divergence has been observed in these proteins among HIV-1 isolates. In this study, the function of conserved gp120 contact residues, Leu593, Trp596, Gly597, Lys601, and Trp610 within the disulfide-bonded region of gp41, was examined in envelope glycoproteins derived from diverse HIV-1 isolates. We found that the gp120-gp41 association function of the disulfide-bonded region is conserved. However, the contribution of individual residues to gp41 folding and/or stability, gp120-gp41 association, membrane fusion function, and viral entry varied from isolate to isolate. In gp120-gp41 derived from the dual-tropic isolate, HIV-189.6, the importance of Trp596 for fusion function was dependent on the chemokine receptor utilized as a fusion cofactor. Thus, the engagement of alternative chemokine receptors may evoke distinct fusion-activation signals involving the site of gp120-gp41 association. An examination of chimeric glycoproteins revealed that the isolate-specific functional contributions of particular gp120-contact residues are influenced by the sequence of gp120 hypervariable regions 1, 2, and 3. These data indicate that the gp120-gp41 association site is structurally and functionally adaptable, perhaps to maintain a functional glycoprotein complex in a setting of host selective pressures driving the rapid coevolution of gp120 and gp41.  相似文献   

17.
The mechanism of the antiviral activity of sulfated polysaccharides on human immunodeficiency virus type 1 (HIV-1) was investigated by determining the effect of dextran sulfate on the binding of CD4 and several anti-gp120 monoclonal antibodies to both recombinant and cell surface gp120. Dextran sulfate did not interfere with the binding of sCD4 to rgp120 on enzyme-linked immunosorbent assay (ELISA) plates or in solution and did not block sCD4 binding to HIV-1-infected cells expressing gp120 on the cell surface. Dextran sulfate had minimal effects on rgp120 binding to CD4+ cells at concentrations which effectively prevent HIV replication. In contrast, it potently inhibited the binding of both rgp120 and cell surface gp120 to several monoclonal antibodies directed against the principal neutralizing domain of gp120 (V3). In an ELISA format, dextran sulfate enhanced the binding of monoclonal antibodies against amino-terminal regions of gp120 and had no effect on antibodies directed to other regions of gp120, including the carboxy terminus. The inhibitory effects of polyanionic polysaccharides on viral binding, viral replication, and formation of syncytia therefore appear mediated by interactions with positively charged amino acids concentrated in the V3 region. This high local positive charge density, unique to the V3 loop, leads us to propose that this property is critical to the function of the V3 region in mediating envelope binding and subsequent fusion between viral and cell membranes. The specific interaction of dextran sulfate with this domain suggests that structurally related molecules on the cell surface, such as heparan sulfate, may be additional targets for HIV binding and infection.  相似文献   

18.
The human immunodeficiency virus envelope glycoprotein (Env) is composed of surface (gp120) and transmembrane (gp41) subunits, which are noncovalently associated on the viral surface. Human immunodeficiency virus Env mediates viral entry after undergoing a complex series of conformational changes induced by interaction with cellular CD4 and a chemokine coreceptor. These changes propagate from gp120 to gp41 via the gp120-gp41 interface, ultimately exposing gp41 and allowing it to form the trimer-of-hairpins structure that provides the driving force for membrane fusion. Key unresolved questions about the gp120-gp41 interface include the specific regions of gp41 and gp120 involved, the mechanism by which receptor and coreceptor-binding-induced conformational changes in gp120 are communicated to gp41, how trimer-of-hairpins formation is prevented in the prefusogenic gp120-gp41 complex, and, ultimately, the structure of the prefusion gp120-gp41 complex. Here, we develop a biochemical model system that mimics a key portion of the gp120-gp41 interface in the prefusogenic state. We find that a gp41 fragment containing the disulfide bond loop and C-peptide region binds primarily to the gp120 C5 region and that this interaction is incompatible with trimer-of-hairpins formation. Based on these data, we propose that in prefusogenic Env, gp120 sequesters the gp41 C-peptide region away from the N-trimer region, preventing trimer-of-hairpins formation until coreceptor binding disrupts this interface. This model system is a valuable tool for studying the gp120-gp41 complex, conformational changes induced by CD4 and coreceptor binding, and the mechanism of membrane fusion.  相似文献   

19.
In models of HIV fusion, the glycoprotein gp41 is thought to form a six-helix bundle during viral fusion with the target cell. This bundle is comprised of three helical regions (from the heptad repeat 2, or HR2, region of gp41) bound to an inner, trimeric, coiled-coil core (from the HR1 region). Although much has been learned about the structure and thermodynamics of this complex, the energetics of the isolated HR1 self-associated oligomer remain largely unknown. By systematically studying self-association through a series of truncations based on a 51-mer HR1 peptide (T865), we have identified amino acid segments which contribute significantly to the stability of the oligomeric HR1 complex. Biophysical characterization of C-terminal truncations of T865 identifies a 10-15-amino acid region that is essential for HR1 oligomerization. This region coincides with a hydrophobic pocket that provides important contacts for the interaction of HR2 helices. Complete removal of this pocket abolishes HR1 oligomerization. Despite the dramatic reduction in stability, the monomeric HR1 peptides are still able to form stable six-helix bundles in the presence of HR2 peptides. Truncations on the N-terminal side of T865 have little effect on oligomerization but significantly reduce the stability of the HR1-HR2 six-helix bundle. Unlike the HR2 binding site, which extends along a hydrophobic groove on the HR1 oligomer, the residues that are critical for HR1 oligomerization are concentrated in a 10-15-amino acid region. These results demonstrate that there are localizations of binding energy, or "hot spots", in the self-association of peptides derived from the HR1 region of gp41.  相似文献   

20.
Yang R  Yang J  Weliky DP 《Biochemistry》2003,42(12):3527-3535
In the HIV-1 gp41 and other viral fusion proteins, the minimal oligomerization state is believed to be trimeric with three N-terminal fusion peptides inserting into the membrane in close proximity. Previous studies have demonstrated that the fusion peptide by itself serves as a useful model fusion system, at least to the hemifusion stage in which the viral and target cell lipids are mixed. In the present study, HIV-1 fusion peptides were chemically synthesized and cross-linked at their C-termini to form dimers or trimers. C-terminal trimerization is their likely topology in the fusogenic form of the intact gp41 protein. The fusogenicity of the peptides was then measured in an intervesicle lipid mixing assay, and the assay results were compared to those of the monomer. For monomer, dimer, and trimer at peptide strand/lipid mol ratios between 0.0050 and 0.010, the final extent of lipid mixing for the dimer and trimer was 2-3 times greater than for the monomer. These data suggest that the higher local concentration of peptide strands in the cross-linked peptides enhances fusogenicity and that oligomerization of the fusion peptide in gp41 may enhance the rate of viral/target cell membrane fusion. For gp41, this effect is in addition to the role of the trimeric coiled-coil structure in bringing about apposition of viral and target cell membranes. NMR measurements on the membrane-associated dimeric fusion peptide were consistent with an extended structure at Phe-8, which is the same as has been observed for the membrane-bound monomer in the same lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号