首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that neuraminidase (NA) pretreatment of human PBMCs markedly increased their cytokine response to lipopolysaccharide (LPS). To study the mechanisms by which this occurs, we transfected HEK293T cells with plasmids encoding TLR4, CD14, and MD2 (three components of the LPS receptor complex), as well as a NFκB luciferase reporting system. Both TLR4 and MD2 encoded by the plasmids are α-2,6 sialylated. HEK293T cells transfected with TLR4/MD2/CD14 responded robustly to the addition of LPS; however, omission of the MD2 plasmid abrogated this response. Addition of culture supernatants from MD2 (sMD2)-transfected HEK293T cells, but not recombinant, non-glycosylated MD2 reconstituted this response. NA treatment of sMD2 enhanced the LPS response as did NA treatment of the TLR4/CD14-transfected cell supplemented with untreated sMD2, but optimal LPS-initiated responses were observed with NA-treated TLR4/CD14-transfected cells supplemented with NA-treated sMD2. We hypothesized that removal of negatively charged sialyl residues from glycans on the TLR4 complex would hasten the dimerization of TLR4 monomers required for signaling. Co-transfection of HEK293T cells with separate plasmids encoding either YFP- or FLAG-tagged TLR4, followed by treatment with NA and stimulation with LPS, led to an earlier and more robust time-dependent dimerization of TLR4 monomers on co-immunoprecipitation, compared to untreated cells. These findings were confirmed by fluorescence resonance energy transfer (FRET) analysis. Overexpression of human Neu1 increased LPS-initiated TLR4-mediated NFκB activation and a NA inhibitor suppressed its activation. We conclude that (1) sialyl residues on TLR4 modulate LPS responsiveness, perhaps by facilitating clustering of the homodimers, and that (2) sialic acid, and perhaps other glycosyl species, regulate MD2 activity required for LPS-mediated signaling. We speculate that endogenous sialidase activity mobilized during cell activation may play a role in this regulation.  相似文献   

2.
3.
TLR4 is the signal-transducing receptor for structurally diverse microbial molecules such as bacterial LPS, respiratory syncytial virus fusion (F) protein, and chlamydial heat shock protein 60. Previous studies associated two polymorphic mutations in the extracellular domain of TLR4 (Asp(299)Gly and Thr(399)Ile) with decreased LPS responsiveness. To analyze the molecular basis for diminished responsiveness, site-specific mutations (singly or coexpressed) were introduced into untagged and epitope (Flag)-tagged wild-type (WT) TLR4 expression vectors to permit a direct comparison of WT and mutant signal transduction. Coexpression of WT TLR4, CD14, and MD-2 expression vectors in HEK293T cells was first optimized to achieve optimal LPS-induced NF-kappaB reporter gene expression. Surprisingly, transfection of cells with MD-2 at high input levels often used in the literature suppressed LPS-induced signaling, whereas supraoptimal CD14 levels did not. Under conditions where WT and polymorphic variants were comparably expressed, significant differences in NF-kappaB activation were observed in response to LPS and two structurally unrelated TLR4 agonists, chlamydial heat shock protein 60 and RSV F protein, with the double, cosegregating mutant TLR4 exhibiting the greatest deficiency. Overexpression of Flag-tagged WT and mutant vectors at input levels resulting in agonist-independent signaling led to equivalent NF-kappaB signaling, suggesting that these mutations in TLR4 affect appropriate interaction with agonist or coreceptor. These data provide new insights into the importance of stoichiometry among the components of the TLR4/MD-2/CD14 complex. A structural model that accounts for the diminished responsiveness of mutant TLR4 polymorphisms to structurally unrelated TLR4 agonists is proposed.  相似文献   

4.
It is widely believed that the alveolar epithelium is unresponsive to LPS, in the absence of serum, due to low expression of TLR4 and CD14. Furthermore, the responsiveness of the epithelium to TLR-2 ligands is also poorly understood. We hypothesised that human alveolar type I (ATI) and type II (ATII) epithelial cells were responsive to TLR2 and TLR4 ligands (MALP-2 and LPS respectively), expressed the necessary TLRs and co-receptors (CD14 and MD2) and released distinct profiles of cytokines via differential activation of MAP kinases. Primary ATII cells and alveolar macrophages and an immortalised ATI cell line (TT1) elicited CD14 and MD2-dependent responses to LPS which did not require the addition of exogenous soluble CD14. TT1 and primary ATII cells expressed CD14 whereas A549 cells did not, as confirmed by flow cytometry. Following LPS and MALP-2 exposure, macrophages and ATII cells released significant amounts of TNFα, IL-8 and MCP-1 whereas TT1 cells only released IL-8 and MCP-1. P38, ERK and JNK were involved in MALP-2 and LPS-induced cytokine release from all three cell types. However, ERK and JNK were significantly more important than p38 in cytokine release from macrophages whereas all three were similarly involved in LPS-induced mediator release from TT1 cells. In ATII cells, JNK was significantly more important than p38 and ERK in LPS-induced MCP-1 release. MALP-2 and LPS exposure stimulated TLR4 protein expression in all three cell types; significantly more so in ATII cells than macrophages and TT1 cells. In conclusion, this is the first study describing the expression of CD14 on, and TLR2 and 4 signalling in, primary human ATII cells and ATI cells; suggesting that differential activation of MAP kinases, cytokine secretion and TLR4 expression by the alveolar epithelium and macrophages is important in orchestrating a co-ordinated response to inhaled pathogens.  相似文献   

5.
The complex consisting of Toll-like receptor 4 (TLR4) and associated MD-2 signals the presence of lipopolysaccharide (LPS) when it is expressed in cell lines. We here show that normal human mononuclear cells express TLR4 and signal LPS via TLR4. CD14 is a molecule that binds to LPS and facilitates its signaling. Little is known, however, about the relationship of CD14 with TLR4-MD-2. We show that CD14 helps TLR4-MD-2 to sense and signal the presence of LPS. CD14 has also been implicated in recognition of apoptotic cells, which leads to phagocytosis without activation. Membrane phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PtdIns) are thought to serve as the ligands for CD14 in apoptotic cells. We find that PtdIns acts as an LPS antagonist in the signaling via TLR4-MD-2. TLR4-MD-2 seems to discriminate LPS from phospholipids. The signaling via TLR4-MD-2 is thus regulated by CD14 and phospholipid such as PtdIns.  相似文献   

6.
The liver is the main organ that clears circulating lipopolysaccharide (LPS), and hepatocytes are a major cell type involved in LPS uptake. Little is known about the mechanisms for LPS internalization in hepatocytes and what signaling pathways are involved. We show here that LPS uptake is initiated after formation of a multi-receptor complex within lipid rafts. We find that essential components for LPS uptake are CD14, TLR4, MD2, and the beta2-integrin CD11b/CD18. Activation of p38 MAPK is also essential for the initiation of LPS uptake, and interestingly, we show that this activation is not through TLR4 signaling by MyD88 but through activation of TIRAP via CD11b/CD18. However, TLR4/MD2 remain essential components at the cell surface as part of the LPS receptor complex. We therefore suggest novel roles for TLR4/MD2, CD11b/CD18, TIRAP, and p38 MAPK in LPS uptake by hepatocytes.  相似文献   

7.
8.
9.
The production of IL-8 can be induced by LPS via TLR4 signaling pathway. In this study, we tested the effect of a herbal melanin (HM) extract, from black cumin seeds (Nigella sativa L.), on IL-8 production. We used HM and LPS in parallel to induce IL-8 production by THP-I, PBMCs, and TLR4-transfected HEK293 cells. Both HM and LPS induced IL-8 mRNA expression and protein production in THP-1 and PBMCs. On applying similar treatment to HEK293 cells that express TLR4, MD2, and CD14, both HM and LPS significantly induced IL-8 protein production. We have also demonstrated that HM and LPS had identical effects in terms of IL-8 stimulation by HEK293 transfected with either TLR4 or MD2-CD14. Melanin extracted from N. sativa L. mimics the action of LPS in the induction of IL-8 by PBMC and the other used cell lines. Our results suggest that HM may share a signaling pathway with LPS that involves TLR4.  相似文献   

10.
The induction of host antimicrobial molecules following binding of pathogen components to pattern recognition receptors such as CD14 and the Toll-like receptors (TLRs) is a key feature of innate immunity. The human airway epithelium is an important environmental interface, but LPS recognition pathways have not been determined. We hypothesized that LPS would trigger beta-defensin (hBD2) mRNA in human tracheobronchial epithelial (hTBE) cells through a CD14-dependent mechanism, ultimately activating NF-kappa B. An average 3-fold increase in hBD2 mRNA occurs 24 h after LPS challenge of hTBE cells. For the first time, we demonstrate the presence of CD14 mRNA and cell surface protein in hTBE cells and show that CD14 neutralization abolishes LPS induction of hBD2 mRNA. Furthermore, we demonstrate TLR mRNA in hTBE cells and NF-kappa B activation following LPS. Thus, LPS induction of hBD2 in hTBE cells requires CD14, which may complex with a TLR to ultimately activate NF-kappa B.  相似文献   

11.
MD-2, a glycoprotein that is essential for the innate response to lipopolysaccharide (LPS), binds to both LPS and the extracellular domain of Toll-like receptor 4 (TLR4). Following synthesis, MD-2 is either secreted directly into the medium as a soluble, active protein, or binds directly to TLR4 in the endoplasmic reticulum before migrating to the cell surface. Here we investigate the function of the secreted form of MD-2. We show that secreted MD-2 irreversibly loses activity over a 24-h period at physiological temperature. LPS, but not lipid A, prevents this loss in activity by forming a stable complex with MD-2, in a CD14-dependent process. Once formed, the stable MD-2.LPS complex activates TLR4 in the absence of CD14 or free LPS indicating that the activating ligand of TLR4 is the MD-2.LPS complex. Finally we show that the MD-2.LPS complex, but not LPS alone, induces epithelial cells, which express TLR4 but not MD-2, to secrete interleukin-6 and interleukin-8. We propose that the soluble MD-2.LPS complex plays a crucial role in the LPS response by activating epithelial and other TLR4(+)/MD-2(-) cells in the inflammatory microenvironment.  相似文献   

12.
Toll-like receptors (TLRs) have recently been identified as fundamental components of the innate immune response to bacterial pathogens. We investigated the role of TLR signaling in immune defense of the mucosal epithelial cells of the lower female genital tract. This site provides first line defense against microbial pathogens while remaining tolerant to a complex biosystem of resident microbiota. Epithelial cells derived from normal human vagina, ectocervix, and endocervix expressed mRNA for TLR1, -2, -3, -5, and -6. However, they failed to express TLR4 as well as MD2, two essential components of the receptor complex for LPS in phagocytes and endothelial cells. Consistent with this, endocervical epithelial cells were unresponsive to protein-free preparations of lipooligosaccharide from Neisseria gonorrhoeae and LPS from Escherichia coli. However, they were capable of responding to whole Gram-negative bacteria and bacterial lysates, as demonstrated by NF-kappaB activation and proinflammatory cytokine production. The presence of soluble CD14, a high-affinity receptor for LPS and other bacterial ligands, enhanced the sensitivity of genital tract epithelial cells to both low and high concentrations of bacteria, suggesting that soluble CD14 can act as a coreceptor for non-TLR4 ligands. These data demonstrate that the response to N. gonorrhoeae and other Gram-negative bacteria at the mucosal surface of the female genital tract occurs in the absence of endotoxin recognition and TLR4-mediated signaling.  相似文献   

13.
High mobility group box 1 (HMGB1) is a DNA-binding protein that possesses cytokinelike, proinflammatory properties when released extracellularly in the C23–C45 disulfide form. HMGB1 also plays a key role as a mediator of acute and chronic inflammation in models of sterile injury. Although HMGB1 interacts with multiple pattern recognition receptors (PRRs), many of its effects in injury models occur through an interaction with toll-like receptor 4 (TLR4). HMGB1 interacts directly with the TLR4/myeloid differentiation protein 2 (MD2) complex, although the nature of this interaction remains unclear. We demonstrate that optimal HMGB1-dependent TLR4 activation in vitro requires the coreceptor CD14. TLR4 and MD2 are recruited into CD14-containing lipid rafts of RAW264.7 macrophages after stimulation with HMGB1, and TLR4 interacts closely with the lipid raft protein GM1. Furthermore, we show that HMGB1 stimulates tumor necrosis factor (TNF)-α release in WT but not in TLR4−/−, CD14−/−, TIR domain-containing adapter-inducing interferon-β (TRIF)−/− or myeloid differentiation primary response protein 88 (MyD88)−/− macrophages. HMGB1 induces the release of monocyte chemotactic protein 1 (MCP-1), interferon gamma–induced protein 10 (IP-10) and macrophage inflammatory protein 1α (MIP-1α) in a TLR4- and CD14-dependent manner. Thus, efficient recognition of HMGB1 by the TLR4/MD2 complex requires CD14.  相似文献   

14.
We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific molecular components that mediate antagonism, we developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Experiments using immunoprecipitates of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal molecular component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.  相似文献   

15.
TLRs are important for the recognition of conserved motifs expressed by invading bacteria. TLR4 is the signaling receptor for LPS, the major proinflammatory component of the Gram-negative cell wall, whereas CD14 serves as the ligand-binding part of the LPS receptor complex. Triggering of TLR4 results in the activation of two distinct intracellular pathways, one that relies on the common TLR adaptor MyD88 and one that is mediated by Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF). Nontypeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen that expresses both TLR4 (LPS and lipooligosaccharide) and TLR2 (lipoproteins) ligands. To determine the roles of CD14, TLR4, and TLR2 during NTHi pneumonia, the following studies were performed: 1) Alveolar macrophages from CD14 and TLR4 knockout (KO) mice were virtually unresponsive to NTHi in vitro, whereas TLR2 KO macrophages displayed a reduced NTHi responsiveness. 2) After intranasal infection with NTHi, CD14 and TLR4 KO mice showed an attenuated early inflammatory response in their lungs, which was associated with a strongly reduced clearance of NTHi from the respiratory tract; in contrast, in TLR2 KO mice, lung inflammation was unchanged, and the number of NTHi CFU was only modestly increased at the end of the 10-day observation period. 3) MyD88 KO, but not TRIF mutant mice showed an increased bacterial load in their lungs upon infection with NTHi. These data suggest that the MyD88-dependent pathway of TLR4 is important for an effective innate immune response to respiratory tract infection caused by NTHi.  相似文献   

16.
Strategic compartmentalization of Toll-like receptor 4 in the mouse gut   总被引:23,自引:0,他引:23  
Pattern recognition receptors (PRRs), which include the Toll-like receptors (TLRs), are involved in the innate immune response to infection. TLR4 is a model for the TLR family and is the main LPS receptor. We wanted to determine the expression of TLR4 and compare it with that of TLR2 and CD14 along the gastrointestinal mucosa of normal and colitic BALB/c mice. Colitis was induced with 2.5% dextran sodium sulfate (DSS). Mucosa from seven segments of the digestive tract (stomach, small intestine in three parts, and colon in three parts) was isolated by two different methods. Mucosal TLR4, CD14, TLR2, MyD88, and IL-1beta mRNA were semiquantified by Northern blotting. TLR4 protein was determined by Western blotting. TLR4/MD-2 complex and CD14 were evaluated by immunohistochemistry. PRR genes were constitutively expressed and were especially stronger in colon. TLR4 and CD14 mRNA were increased in the distal colon, but TLR2 mRNA was expressed more strongly in the proximal colon, and MyD88 had a uniform expression throughout the gut. Accordingly, TLR4 and CD14 protein levels were higher in the distal colon. TLR4/MD-2 and CD14 were localized at crypt bottom epithelial cells. TLR4/MD2, but not CD14, was found in mucosal mononuclear cells. Finally, DSS-induced inflammation was localized in the distal colon. All genes studied were up-regulated during DSS-induced inflammation, but the normal colon-stressed gut distribution was preserved. Our findings demonstrate that TLR4, CD14, and TLR2 are expressed in a compartmentalized manner in the mouse gut and provide novel information about the in vivo localization of PRRs.  相似文献   

17.
髓样分化蛋白-2在识别和转导内毒素信号中的作用   总被引:1,自引:0,他引:1  
脂多糖(LPS)通过TLR4介导细胞炎症反应.研究表明,髓样分化蛋白-2(MD-2)通过与TLR4形成复合物参与LPS诱导的细胞信号过程.TLR4/MD-2复合物中的MD-2结合LPS后,引起TLR4低聚化,进而激发下游信号.MD-2合成后,大部分在内质网/高尔基体和TLR4结合,然后以TLR4/MD-2复合物的形式在细胞表面表达.这既能调节TLR4的胞内分布,又能辅助TLR4识别LPS.还有一部分MD-2释放到血浆中,形成可溶性的MD-2(sMD-2).sMD-2在CD14参与下,能结合血浆中的LPS,形成LPS-sMD-2复合物从而辅助只表达TLR4而不表达MD-2的细胞识别LPS,但过度表达的sMD-2又能抑制LPS信号.MD-2在TLR4介导的内毒素识别和信号转导过程中发挥了重要的调控作用.  相似文献   

18.
Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins   总被引:2,自引:0,他引:2  
TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants (KD) of LPS for immobilized CD14 and MD-2 were 8.7 microM, and 2.3 microM, respectively. The association rate constant (Kon) of LPS for MD-2 was 5.61 x 10(3) M-1S-1, and the dissociation rate constant (Koff) was 1.28 10 2 S 1, revealing slow association and fast dissociation with an affinity constant KD of 2.33 x 10-6 M at 25 degreesC. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.  相似文献   

19.
The structural features of some proteins of the innate immune system involved in mediating responses to microbial pathogens are highly conserved throughout evolution. Examples include members of the Drosophila Toll (dToll) and the mammalian Toll-like receptor (TLR) protein families. Activation of Drosophila Toll is believed to occur via an endogenous peptide rather than through direct binding of microbial products to the Toll protein. In mammals there is a growing consensus that lipopolysaccharide (LPS) initiates its biological activities through a heteromeric receptor complex containing CD14, TLR4, and at least one other protein, MD-2. LPS binds directly to CD14 but whether LPS then binds to TLR4 and/or MD-2 is not known. We have used transient transfection to express human TLRs, MD-2, or CD14 alone or in different combinations in HEK 293 cells. Interactions between LPS and these proteins were studied using a chemically modified, radioiodinated LPS containing a covalently linked, UV light-activated cross-linking group ((125)I-ASD-Re595 LPS). Here we show that LPS is cross-linked specifically to TLR4 and MD-2 only when co-expressed with CD14. These data support the contention that LPS is in close proximity to the three known proteins of its membrane receptor complex. Thus, LPS binds directly to each of the members of the tripartite LPS receptor complex.  相似文献   

20.
TLR4 is the signaling but not the lipopolysaccharide uptake receptor   总被引:5,自引:0,他引:5  
TLR4 is the primary recognition molecule for inflammatory responses initiated by bacterial LPS (endotoxin). Internalization of endotoxin by various cell types is an important step for its removal and detoxification. Because of its role as an LPS-signaling receptor, TLR4 has been suggested to be involved in cellular LPS uptake as well. LPS uptake was investigated in primary monocytes and endothelial cells derived from TLR4 and CD14 knockout C57BL/6 mice using tritiated and fluorescein-labeled LPS. Intracellular LPS distribution was investigated by deconvolution confocal microscopy. We could not observe any difference in LPS uptake and intracellular LPS distribution in either monocytes or endothelial cells between TLR4(-/-) and wild-type cells. As expected, CD14(-/-) monocytes showed a highly impaired LPS uptake, confirming CD14-dependent uptake in monocytes. Upon longer incubation periods, the CD14-deficient monocytes mimicked the LPS uptake pattern of endothelial cells. Endothelial cell LPS uptake is slower than monocyte uptake, LBP rather than CD14 dependent, and sensitive to polyanionic polymers, which have been shown to block scavenger receptor-dependent uptake mechanisms. We conclude that TLR4 is not involved in cellular LPS uptake mechanisms. In membrane CD14-positive cells, LPS is predominantly taken up via CD14-mediated pathways, whereas in the CD14-negative endothelial cells, there is a role for scavenger receptor-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号