首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild barley, Hordeum spontaneum C. Koch, is the progenitor of cultivated barley, Hordeum vulgare. The centre of diversity is in the Fertile Crescent of the Near East, where wild barley grows in a wide range of conditions (temperature, water availability, day length, etc.). The genetic diversity of 39 wild barley genotypes collected from Israel, Turkey and Iran was studied with 33 SSRs of known map location. Analysis of molecular variance (AMOVA) was performed to partition the genetic variation present within from the variation between the three countries of origin. Using classification tree analysis, two (or three) specific SSRs were identified which could correctly classify most of the wild barley genotypes according to country of origin. Associations of SSR variation with flowering time and adaptation to site-of-origin ecology and geography were investigated by two contrasting statistical approaches, linear regression based on SSR length variation and linear regression based on SSR allele class differences. A number of SSRs were significantly associated with flowering time under four different growing regimes (short days, long days, unvernalised and vernalised). Most of the associations observed could be accounted for by close linkage of the SSR loci to earliness per se genes. No associations were found with photoperiodic and vernalisation response genes known to control flowering in cultivated barley suggesting that different genetic factors may be active in wild barley. Novel genomic regions controlling flowering time in wild barley were detected on chromosomes 1HS, 2HL, 3HS and 4HS. Associations of SSRs with site-of-origin ecological and geographic data were found primarily in genomic regions determining plant development. This study shows that the analyses of SSR variation by allele class and repeat length are complementary, and that some SSRs are not necessarily selectively neutral.  相似文献   

2.
The interaction between members of a gene network has an important impact on the variation of quantitative traits, and can influence the outcome of phenotype/genotype association studies. Three genes (Ppd-H1, HvCO1, HvFT1) known to play an essential role in the regulation of flowering time under long days in barley were subjected to an analysis of nucleotide diversity in a collection of 220 spring barley accessions. The coding region of Ppd-H1 was highly diverse, while both HvCO1 and HvFT1 showed a rather limited level of diversity. Within all three genes, the extent of linkage disequilibrium was variable, but on average only moderate. Ppd-H1 is strongly associated with flowering time across four environments, showing a difference of five to ten days between the most extreme haplotypes. The association between flowering time and the variation at HvFT1 and HvCO1 was strongly dependent on the haplotype present at Ppd-H1. The interaction between HvCO1 and Ppd-H1 was statistically significant, but this association disappeared when the analysis was corrected for the geographical origin of the accessions. No association existed between flowering time and allelic variation at HvFT1. In contrast to Ppd-H1, functional variation at both HvCO1 and HvFT1 is limited in cultivated barley.  相似文献   

3.
Since the genetic control of flowering time is very important in photoperiod-sensitive soybean (Glycine max (L.) Merr.), genes affecting flowering under different environment conditions have been identified and described. The objectives were to identify quantitative trait loci (QTLs) for flowering time in different latitudinal and climatic regions, and to understand how chromosomal rearrangement and genome organization contribute to flowering time in soybean. Recombinant inbred lines from a cross between late-flowering ‘Jinpumkong 2’ and early-flowering ‘SS2-2’ were used to evaluate the phenotypic data for days to flowering (DF) collected from Kamphaeng Saen, Thailand (14°01′N), Suwon, Korea (37°15′N), and Longjing, China (42°46′N). A weakly positive phenotypic correlation (r = 0.36) was found between DF in Korea and Thailand; however, a strong correlation (r = 0.74) was shown between Korea and China. After 178 simple sequence repeat (SSR) markers were placed on a genetic map spanning 2,551.7 cM, four independent DF QTLs were identified on different chromosomes (Chrs). Among them, three QTLs on Chrs 9, 13 and 16 were either Thailand- or Korea-specific. The DF QTL on Chr 6 was identified in both Korea and China, suggesting it is less environment-sensitive. Comparative analysis of four DF QTL regions revealed a syntenic relationship between two QTLs on Chrs 6 and 13. All five duplicated gene pairs clustered in the homeologous genomic regions were found to be involved in the flowering. Identification and comparative analysis of multiple DF QTLs from different environments will facilitate the significant improvement in soybean breeding programs with respect to control of flowering time.  相似文献   

4.
Cultivated flax (Linum usitatissimum L.) is the earliest oil and fiber crop and its early domestication history may involve multiple events of domestication for oil, fiber, capsular indehiscence, and winter hardiness. Genetic studies have demonstrated that winter cultivated flax is closely related to oil and fiber cultivated flax and shows little relatedness to its progenitor, pale flax (L. bienne Mill.), but winter hardiness is one major characteristic of pale flax. Here, we assessed the genetic relationships of 48 Linum samples representing pale flax and four trait-specific groups of cultivated flax (dehiscent, fiber, oil, and winter) through population-based resequencing at 24 genomic regions, and revealed a winter group of cultivated flax that displayed close relatedness to the pale flax samples. Overall, the cultivated flax showed a 27% reduction of nucleotide diversity when compared with the pale flax. Recombination frequently occurred at these sampled genomic regions, but the signal of selection and bottleneck was relatively weak. These findings provide some insight into the impact and processes of flax domestication and are significant for expanding our knowledge about early flax domestication, particularly for winter hardiness.  相似文献   

5.
Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.  相似文献   

6.
7.
 We have mapped QTLs (quantitative trait loci) for an adaptive trait, flowering time, in a selfing annual, Arabidopsis thaliana. To obtain a mapping population we made a cross between an early-summer, annual strain, Li-5, and an individual from a late over-wintering natural population, Naantali. From the backcross to Li-5 298 progeny were grown, of which 93 of the most extreme individuals were genotyped. The data were analysed with both interval mapping and composite interval mapping methods to reveal one major and six minor QTLs, with at least one QTL on each of the five chromosomes. The QTL on chromosome 4 was a major one with an effect of 17.3 days on flowering time and explaining 53.4% of the total variance. The others had effects of at most 6.5 days, and they accounted for only small portions of the variance. Epistasis was indicated between one pair of the QTLs. The result of finding one major QTL and little epistasis agrees with previous studies on flowering time in Arabidopsis thaliana and other species. That several QTLs were found was expected considering the large number of possible candidate loci. In the light of the suggested genetic models of gene action at the candidate loci, epistasis was to be expected. The data showed that major QTLs for adaptive traits can be detected in non-domesticated species. Received: 15 January 1997/Accepted: 21 February 1997  相似文献   

8.
The Hessian fly, Mayetiola destructor (Say), is an important insect pest of wheat (Triticum spp.) in North Africa, North America, southern Europe and northern Kazakhstan. Both wheat and this pest are believed to have originated from West Asia in the Fertile Crescent. The virulence of a Hessian fly population from Syria against a set of cultivars carrying different resistance genes, in addition to other effective sources with unknown genes, was determined in the field and laboratory at the International Center for Agricultural Research in the Dry Areas (ICARDA) during the 2005/2006 cropping season. Only two resistance genes (H25 and H26) were effective against the Syrian Hessian fly population, making it the most virulent worldwide. This high virulence supports the hypothesis that Hessian fly coevolved with wheat in the Fertile Crescent of West Asia. The ICARDA screening programme is using this Hessian fly population to identify new resistance genes to this pest.  相似文献   

9.

Background

Barley, globally the fourth most important cereal, provides food and beverages for humans and feed for animal husbandry. Maximizing grain yield under varying climate conditions largely depends on the optimal timing of flowering. Therefore, regulation of flowering time is of extraordinary importance to meet future food and feed demands. We developed the first barley nested association mapping (NAM) population, HEB-25, by crossing 25 wild barleys with one elite barley cultivar, and used it to dissect the genetic architecture of flowering time.

Results

Upon cultivation of 1,420 lines in multi-field trials and applying a genome-wide association study, eight major quantitative trait loci (QTL) were identified as main determinants to control flowering time in barley. These QTL accounted for 64% of the cross-validated proportion of explained genotypic variance (pG). The strongest single QTL effect corresponded to the known photoperiod response gene Ppd-H1. After sequencing the causative part of Ppd-H1, we differentiated twelve haplotypes in HEB-25, whereof the strongest exotic haplotype accelerated flowering time by 11 days compared to the elite barley haplotype. Applying a whole genome prediction model including main effects and epistatic interactions allowed predicting flowering time with an unmatched accuracy of 77% of cross-validated pG.

Conclusions

The elaborated causal models represent a fundamental step to explain flowering time in barley. In addition, our study confirms that the exotic biodiversity present in HEB-25 is a valuable toolbox to dissect the genetic architecture of important agronomic traits and to replenish the elite barley breeding pool with favorable, trait-improving exotic alleles.
  相似文献   

10.
The mRNAs encoding the chlorophyll a/b binding (cab) proteins of the light harvesting system were monitored in the wild cereals, wild emmer wheat,Triticum dicoccoides, and wild barley,Hordeum spontaneum, the progenitors of all cultivated wheats and barley, respectively. Significantly different mRNA levels were detected at different time points during the day, with generally low levels around sunrise, sunset and midnight, and maximum levels around noon. These results indicate that a diurnal control of thecab gene expression is present in these ancient species.  相似文献   

11.
? In this study, we used a combination of theoretical (models) and experimental (field data) approaches to investigate the interaction between light and temperature signalling in the control of Arabidopsis flowering. ? We utilised our recently published phenology model that describes the flowering time of Arabidopsis grown under a range of field conditions. We first examined the ability of the model to predict the flowering time of field plantings at different sites and seasons in light of the specific meteorological conditions that pertained. ? Our analysis suggested that the synchrony of temperature and light cycles is important in promoting floral initiation. New features were incorporated into the model that improved its predictive accuracy across seasons. Using both laboratory and field data, our study has revealed an important seasonal effect of night temperatures on flowering time. Further model adjustments to describe phytochrome (phy) mutants supported our findings and implicated phyB in the temporal gating of temperature-induced flowering. ? Our study suggests that different molecular pathways interact and predominate in natural environments that change seasonally. Temperature effects are mediated largely during the photoperiod during spring/summer (long days) but, as days shorten in the autumn, night temperatures become increasingly important.  相似文献   

12.

Objective

To characterize hepatitis C virus (HCV) epidemiology in countries of the Fertile Crescent region of the Middle East and North Africa (MENA), namely Iraq, Jordan, Lebanon, Palestine, and Syria.

Methods

We systematically reviewed and synthesized available records of HCV incidence and prevalence following PRISMA guidelines. Meta-analyses were implemented using a DerSimonian-Laird random effects model with inverse weighting to estimate the country-specific HCV prevalence among the various at risk population groups.

Results

We identified eight HCV incidence and 240 HCV prevalence measures in the Fertile Crescent. HCV sero-conversion risk among hemodialysis patients was 9.2% in Jordan and 40.3% in Iraq, and ranged between 0% and 3.5% among other populations in Iraq over different follow-up times. Our meta-analyses estimated HCV prevalence among the general population at 0.2% in Iraq (range: 0–7.2%; 95% CI: 0.1–0.3%), 0.3% in Jordan (range: 0–2.0%; 95% CI: 0.1–0.5%), 0.2% in Lebanon (range: 0–3.4%; 95% CI: 0.1–0.3%), 0.2% in Palestine (range: 0–9.0%; 95% CI: 0.2–0.3%), and 0.4% in Syria (range: 0.3–0.9%; 95% CI: 0.4–0.5%). Among populations at high risk, HCV prevalence was estimated at 19.5% in Iraq (range: 0–67.3%; 95% CI: 14.9–24.5%), 37.0% in Jordan (range: 21–59.5%; 95% CI: 29.3–45.0%), 14.5% in Lebanon (range: 0–52.8%; 95% CI: 5.6–26.5%), and 47.4% in Syria (range: 21.0–75.0%; 95% CI: 32.5–62.5%). Genotypes 4 and 1 appear to be the dominant circulating strains.

Conclusions

HCV prevalence in the population at large appears to be below 1%, lower than that in other MENA sub-regions, and tending towards the lower end of the global range. However, there is evidence for ongoing HCV transmission within medical facilities and among people who inject drugs (PWID). Migration dynamics appear to have played a role in determining the circulating genotypes. HCV prevention efforts should be targeted, and focus on infection control in clinical settings and harm reduction among PWID.  相似文献   

13.
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

14.
15.
Barley cDNA and genomic clones homologous to the Arabidopsis flowering time regulator GIGANTEA were isolated. Genetic mapping showed that GIGANTEA is present as a single copy gene in barley (3HS) and rice (1S), while two copies are present in maize (3S and 8S) at locations consistent with previous comparative mapping studies. Comparison of the barley peptide with rice and Arabidopsis gave 94% and 79% similarity, respectively. Northern and semi-quantitative RT-PCR analysis of the barley gene (HvGI) showed the presence of a single mRNA species, with a peak of expression between 6 h and 9 h after dawn in short days (8 h light) and a peak 15 h after dawn in long days (16 h light). This behaviour is similar to that seen in Arabidopsis and rice, showing that sequence and expression pattern were well conserved. A lack of correspondence with the map positions of QTL affecting flowering time (heading date) suggests that variation at HvGI does not provide a major source of adaptive variation in photoperiod response.  相似文献   

16.
17.
Wild barley shows a large morphological and phenotypic variation, which is associated with ecogeographical factors and correlates with genotypic differences. Diversity of defense related genes and their expression in wild barley has been recognized and has led to attempts to exploit genes from H. spontaneum in breeding programs. The aim of this study was to determine the variation in the accumulation of hordatines, which are Hordeum-specific preformed secondary metabolites with strong and broad antimicrobial activity in vitro, in 50 accessions of H. spontaneum from different habitats in Israel. Differences in the accumulation of hordatines in the seedling stage were significant between different H. spontaneum genotypes from different regional locations and micro-sites. Variation in the hordatine accumulation within genotypes was between 9% and 45%, between genotypes from the same location between 13% and 38%, and between genotypes from different locations up to 121%. Principal component analysis showed that water related factors explain 39%, temperature related factors explain 33% and edaphic factors account for 11% of the observed variation between the populations of H. spontaneum. Genetic analysis of the tested accessions with LP-PCR primers that are specific for genes involved in the biosynthetic pathway of hordatines showed tight correlations between hordatine abundance and genetic diversity of these markers. Multiple regression analyses indicated associations between genetic diversity of genes directly involved in hordatine biosynthesis, ecogeographical factors and the accumulation of hordatines.  相似文献   

18.
19.
Wild barley (Hordeum spontaneum) is the progenitor of cultivated barley (Hordeum vulgare) and provides a rich source of genetic variations for barley improvement. Currently, the genome sequences of wild barley and its differences with cultivated barley remain unclear. In this study, we report a high‐quality draft assembly of wild barley accession (AWCS276; henceforth named as WB1), which consists of 4.28 Gb genome and 36 395 high‐confidence protein‐coding genes. BUSCO analysis revealed that the assembly included full lengths of 95.3% of the 956 single‐copy plant genes, illustrating that the gene‐containing regions have been well assembled. By comparing with the genome of the cultivated genotype Morex, it is inferred that the WB1 genome contains more genes involved in resistance and tolerance to biotic and abiotic stresses. The presence of the numerous WB1‐specific genes indicates that, in addition to enhance allele diversity for genes already existing in the cultigen, exploiting the wild barley taxon in breeding should also allow the incorporation of novel genes. Furthermore, high levels of genetic variation in the pericentromeric regions were detected in chromosomes 3H and 5H between the wild and cultivated genotypes, which may be the results of domestication. This H. spontaneum draft genome assembly will help to accelerate wild barley research and be an invaluable resource for barley improvement and comparative genomics research.  相似文献   

20.
The effects of synchronous photo (16 h daylength) and thermo (2 degrees C daily fluctuation) cycles on flowering time were compared with constant light and temperature treatments using two barley mapping populations derived from the facultative cultivar 'Dicktoo'. The 'Dicktoo'x'Morex' (spring) population (DM) segregates for functional differences in alleles of candidate genes for VRN-H1, VRN-H3, PPD-H1, and PPD-H2. The first two loci are associated with the vernalization response and the latter two with photoperiod sensitivity. The 'Dicktoo'x'Kompolti korai' (winter) population (DK) has a known functional polymorphism only at VRN-H2, a locus associated with vernalization sensitivity. Flowering time in both populations was accelerated when there was no fluctuating factor in the environment and was delayed to the greatest extent with the application of synchronous photo and thermo cycles. Alleles at VRN-H1, VRN-H2, PPD-H1, and PPD-H2--and their interactions--were found to be significant determinants of the increase/decrease in days to flower. Under synchronous photo and thermo cycles, plants with the Dicktoo (recessive) VRN-H1 allele flowered significantly later than those with the Kompolti korai (recessive) or Morex (dominant) VRN-H1 alleles. The Dicktoo VRN-H1 allele, together with the late-flowering allele at PPD-H1 and PPD-H2, led to the greatest delay. The application of synchronous photo and thermo cycles changed the epistatic interaction between VRN-H2 and VRN-H1: plants with Dicktoo type VRN-H1 flowered late, regardless of the allele phase at VRN-H2. Our results are novel in demonstrating the large effects of minor variations in environmental signals on flowering time: for example, a 2 degrees C thermo cycle caused a delay in flowering time of 70 d as compared to a constant temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号