首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exocrine acinar cells, like parotid cells, have difficulty in maintaining their functions in cell lines or in primary cultures. For this reason, molecular studies on exocrine cell functions are unsatisfactory. To examine the mechanisms whereby the functions of parotid acinar cells are maintained, we attempted to establish a system for primary culture and transfection of exogenous genes. Acinar cells were dispersed from rat parotid glands by digestion with enzymes and were cultured in a medium containing rat serum. Most of the cultured cells had secretory granules that contained amylase, suggesting that they were derived from acinar cells, although they spread on the dish surface and formed filopodia. The cultured cells retained both granules and the ability to release amylase in response to -adrenergic and cholinergic agonists, even 48 h after dispersion. However, the total amount of amylase in the cells decreased rapidly from 24 to 48 h after dispersion. These results suggested that amylase synthesis was more damaged than the machinery for exocytosis during culture in vitro. VAMP2 gene fused with enhanced green fluorescence protein was transfected into the dispersed acinar cells, and VAMP2 protein was expressed and localized to amylase-containing granules, as normally seen for endogenous VAMP2 protein. This indicated that new granules were generated, and that protein sorting was functional. The cells cultured by this method maintained their functions for at least 48 h. They can be used for examining the effects of exogenous genes on parotid acinar cell functions, such as regulated exocytosis and the maturation of secretory granules.This work was supported in part by Grants-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (11771148, 13771104, 16390534, 16591868), by Nihon University Multidisciplinary Research Grant for 2001 and 2002, by a Suzuki Memorial Grant of Nihon University School of Dentistry at Matsudo (General Individual Research Grant for 2000 and 2002 and Joint Research Grant for 2003), and by a Grant-in-Aid for a 2001 Multidisciplinary Research Project from MEXT.  相似文献   

2.
Summary We have successfully maintained and biochemically characterized differentiated rat parotid acinar cells cultured for long periods (6 mo.). The cells were cultured on a reconstituted basement membrane matrix in a medium containing a variety of agents that promote cellular proliferation and differentiation. The cultured cells retain the characteristics of the parental parotid acinar cells. They exhibit both secretory granules and abundant cellular organelles required for protein synthesis and secretion. In situ hybridization and immunocytochemistry demonstrate high levels of proline-rich protein mRNA and protein, and lower levels of amylase mRNA and protein, in their cytoplasm. These findings suggest that rat parotid acinar cells can be maintained in a differentiated state in vitro for long periods, and can serve as a useful model system for studying the regulation of exocrine secretory processes.  相似文献   

3.
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.  相似文献   

4.
Rab proteins are geranylgeranylated on their carboxyl terminal cysteine motifs by geranylgeranyltransferase II (GGTase). Rab escort protein (REP) is required to present Rab proteins to GGTase. REP may remain bound to newly isoprenylated Rab proteins and present them to their target membrane. Other studies have shown that Rab proteins cycle between the membrane and cytosolic compartments and that cytosolic Rab proteins are complexed with rab-GDI. In the present study, we examined the expression and localization of REP isoforms in parotid acinar cells. Although both REP isoforms, REP-1 and REP-2, were detected in parotid cytosol, REP-2 was the predominant isoform. Subcellular fractionation revealed that approximately 42% of cellular REP-2 is membrane-associated. REP-2 was partially removed from parotid membranes with 1 M NaCl or Na(2)CO(3), indicating that REP-2 is a peripheral membrane protein. Membrane-associated REP-2 did not colocalize with Rab3D on secretory granule membranes. However, density gradient centrifugation revealed that membrane-associated REP-2 and Rab3D colocalize on low- and high-density membrane fractions in parotid acinar cells. Isoproterenol, an agent which induces amylase release from parotid glands, caused a shift in both REP-2 and Rab3D to less dense membrane fractions. When acinar cell cytosol was fractionated by gel filtration chromatography, Rab3D eluted exclusively with REP, not rab-GDI. In contrast, Rab1B and Rab5 eluted with both REP and Rab-GDI. Colocalization of Rab3D and REP-2 on acinar cell membranes suggests that REP-2 plays a role in delivering Rab3D to parotid membranes and may regulate guanine nucleotide binding to membrane-associated Rab3D. In addition, unlike other Rab proteins, cytosolic Rab3D appears to associate exclusively with REP, not rab-GDI in parotid acinar cells.  相似文献   

5.
Sj?gren's syndrome and therapeutic radiation for head and neck cancers result in irreversible changes in the parenchyma of salivary glands, loss of acinar cells, prominence of duct cells, and fibrosis. To clarify mechanisms of salivary gland dysfunction, we identified a signaling pathway involved in the dedifferentiation of primary cultures of parotid acinar cells. We reported previously that the expression pattern of claudins changes during culture, is related to the three-dimensional organization of the cells, and reflects their ability to function as acinar cells. In this study, we found that this change of claudin expression is a process of dedifferentiation, because expression of other differentiation markers also changes during culture. The expression levels of claudins-4 and -6, cytokeratin 14, and vimentin are increased, and those of claudin-10, aquaporin 5, and amylase are decreased. Inhibitors of Src and p38 MAP kinases suppress these changes and increase the expression of acinar marker proteins. Differences in extracellular matrix components have no effect. Activation of p38 MAP kinase occurs during cell isolation from the parotid glands and is retained up to 6 h after the isolation. In contrast, activation of Src kinases does not increase during the cell isolation. The Src inhibitor PP1 suppresses the activation of p38 MAP kinase. Therefore, cellular stresses induced during cell isolation cause dedifferentiation and transition to duct-like cells through activation of p38 MAP kinase and constitutively active Src kinases.  相似文献   

6.
7.
Tight junctions are essential for the maintenance of epithelial cell polarity. We have previously established a system for the primary culture of salivary parotid acinar cells that retain their ability to generate new secretory granules and to secrete proteins in a signal-dependent manner. Because cell polarity and cell-cell adhesion are prerequisites for the formation of epithelial tissues, we have investigated the structure of the tight junctions in these cultures. We have found two types of cellular organization in the culture: monolayers and semi-spherical clusters. Electron microscopy has revealed tight junctions near the apical region of the lateral membranes between cells in the monolayers and cells at the surface of the clusters. The cells in the interior of the clusters also have tight junctions and are organized around a central lumen. These interior cells retain more secretory granules than the surface or monolayer cells, suggesting that they maintain their original character as acinar cells. The synthesis of claudin-4 increases during culture, although it is not detectable in the cells immediately after isolation from the glands. Immunofluorescence microscopy has shown that claudin-4 is synthesized in the monolayers and at the surface of the clusters, but not inside the clusters. Only claudin-3, which is present in the original acinar cells following isolation and in the intact gland, has been detected inside the clusters. These results suggest that differences in claudin expression are related to the three-dimensional structures of the cell cultures and reflect their ability to function as acinar cells. This work was supported by grants-in-aid for scientific research from the Ministry of Education, Science, Culture, Sports, and Technology of Japan (16591868, 16791135), by a Suzuki Memorial Grant of the Nihon University School of Dentistry at Matsudo (Joint Research Grant for 2003), by a Nihon University Multidisciplinary Research Grant for 2005 and 2006, and by a Grant-in-Aid for a 2003 Multidisciplinary Research Project from MEXT.  相似文献   

8.
9.
Receptor interactions of parotid acinar cells with beta-agonists are mediated by cyclic 3',5'-monophosphate (cAMP) and expressed as cAMP-dependent protein kinase (cAPK) activation. In addition to its location in the cytoplasm, we have shown that cAPK is associated with the nuclear non-histone protein (NHP) fraction (0.35 M NaCl extract) of rat parotid acinar cells. Nuclei were prepared from isolated parotid acini with minimal contamination from other cell types or cytoplasmic components. The nuclear cAPK activity was inhibited by the thermostable inhibitor and was stimulated by the addition of exogenous cAMP to the assay, indicating that the enzyme is present in the holoenzyme form. Enzyme activity was not increased in the presence of detergent, suggesting that cAPK is not bound to the nuclear membrane. Photoaffinity-labeling studies with an 8-azido analog of cAMP showed that regulatory subunits of both type I and type II cAPK isozymes are present in parotid cell nuclei. Short-term in vitro stimulation of the acini with 10(-6) M isoproterenol did not alter cAPK activity in the nuclear fraction. These findings indicate that compartmentation of cAPK into nuclear and extranuclear locations in rat parotid acinar cells is similar to that of several other cell types which are responsive to hormonal stimulation.  相似文献   

10.
The cyclic AMP-dependent protein kinases were immunolocalized in the rat parotid gland using a monospecific antiserum against their catalytic subunit. The kinases were found to be primarily located in the cytoplasm of the parotid duct cells with a preference for the apical cell region. The result questions the traditional view of the control of parotid gland secretion and suggests a role of cyclic AMP not only in the acinar protein secretion but also in ductal functions like fluid and electrolyte transport.  相似文献   

11.
IL-1beta, TNF-alpha, and IL-6 have been implicated in the destruction of parotid gland acinar cells (but not duct cells) in autoimmune sialoadenitis. Here we report the temporal alterations of these cytokines in parotid acinar cells that may lead to this specificity in cell death in the non-obese diabetic (NOD) mouse model for Sj?gren's syndrome. Immunohistochemistry on paraffin sections of parotid gland from 5- and 10-week-old BALB/c and NOD mice confirmed the presence of many peri-acinar lymphoid nodules but few T-cells and macrophages between acinar cells. RT-PCR on enzymatically dispersed mouse parotid acinar cells (MPACs) showed no bands for CD3varepsilon, CD20, or F4/80 regardless of mouse strain or age. By ELISA, MPACs from 10-week-old NODs showed a small but highly significant (p<0.003) increase in IL-1beta and a large significant decrease (p<0.008) in IL-6 compared to 5-week-old NODs. Norepinephrine-stimulated amylase release from MPACs was not different regardless of mouse strain or age. These data show that alterations in acinar cell production of IL-1beta and IL-6 in aging NODs precede periductal lymphoid aggregates and acinar cell secretory dysfunction. (J Histochem Cytochem 48:1033-1041,2000)  相似文献   

12.
Spatiotemporal analysis of exocytosis in mouse parotid acinar cells   总被引:1,自引:0,他引:1  
Exocrine cells of the digestive system are specialized to secrete protein and fluid in response to neuronal and/or hormonal input. Although morphologically similar, parotid and pancreatic acinar cells exhibit important functional divergence in Ca2+ signaling properties. To address whether there are fundamental differences in exocytotic release of digestive enzyme from exocrine cells of salivary gland versus pancreas, we applied electrophysiological and optical methods to investigate spatial and temporal characteristics of zymogen-containing secretory granule fusion at the single-acinar cell level by direct or agonist-induced Ca2+ and cAMP elevation. Temporally resolved membrane capacitance measurements revealed that two apparent phases of exocytosis were induced by Ca2+ elevation: a rapidly activated initial phase that could not be resolved as individual fusion events and a second phase that was activated after a delay, increased in a staircaselike fashion, was augmented by cAMP elevation, and likely reflected both sequential compound and multivesicular fusion of zymogen-containing granules. Optical measurements of exocytosis with time-differential imaging analysis revealed that zymogen granule fusion was induced after a minimum delay of 200 ms, occurred initially at apical and basolateral borders of acinar cells, and under strong stimulation proceeded from apical pole to deeper regions of the cell interior. Zymogen granule fusions appeared to coordinate subsequent fusions and produced persistent structures that generally lasted several minutes. In addition, parotid gland slices were used to assess secretory dynamics in a more physiological context. Parotid acinar cells were shown to exhibit both similar and divergent properties compared with the better-studied pancreatic acinar cell regarding spatial organization and kinetics of exocytotic fusion of zymogen granules. membrane capacitance; differential imaging; zymogen; gland slice; exocrine cells  相似文献   

13.
Summary Apoptosis is a highly organized cellular process that is critical for maintaining glandular homeostasis. We have used primary rat salivary acinar cells from the parotid and submandibular glands to investigate the critical regulatory events involved in apoptosis. Caspase-3 activity, cleavage of caspase substrates, and deoxyribonucleic acid (DNA) fragmentation were assayed in cells treated with etoposide, a DNA-damaging agent, or brefeldin A (BFA), a Golgi toxin. Dose-response studies showed that the sensitivity of both cell types to etoposide and BFA was similar, with 150 μM etoposide or 1.5 μM BFA inducing maximal caspace activation. However, BFA induced a more robust activation of caspase and DNA fragmentation in both cell types. Similar results were observed when the caspase cleavage of poly(adenosine 5′-diphosphate ribose) polymerase and protein kinase C delta were analyzed by Western blot. Analysis of the kinetics of apoptosis showed that caspace-3 activation was maximal at 8 h of etoposide or BFA treatment in the parotid cells and at 8–18 h in the submandibular cells. A similar time course was observed when DNA fragmentation was assayed, although maximal DNA fragmentation in BFA-treated cells was two-to threefold higher than that observed in etoposide-treated cells. Despite slight kinetic differences, it would appear that the apoptotic cascade is very similar in both primary parotid and submandibular acinar cells. Although limited in their long-term stability in culture, the use of primary, nonimmortalized salivary acinar cultures will also permit the use of specific transgenic animals to further characterize the molecular events involved in the regulation of salivary gland acinar cell apoptosis.  相似文献   

14.
Rat parotid gland was examined for the presence of 1α,25-dihydroxycholecalciferol receptors using sucrose density gradient ultracentrifugation techniques. [3H]DHCC bound specifically and with high affinity to a 3.2 S protein present in nuclear and cytosolic fractions of isolated parotid acinar cells. Values for the equilibrium dissociation constant and for the receptor concentration were determined to be approx. 0.1 nM, and 12 fmol/mg protein, respectively. In competitive inhibition experiments, the 3.2 S protein displayed 100-fold lower affinity for 25-hydroxycholecalciferol than for DHCC, and did not bind estradiol or methylprednisolone. These results suggest that rat parotid gland acinar cells contain classical DHCC receptors. A similar approach failed to provide evidence of DHCC receptors in isolated pancreas acinar cells, lacrimal gland or submandibular gland. It has been previously reported that vitamin D is essential for normal exocrine secretion from the rat parotid gland (Tenenhouse, A. and Afari, G. (1978) Biochim. Biophys. Acta 538, 631–634). The present findings suggest that this effect is the result of a direct action of DHCC on the parotid gland acinar cell. The absence of DHCC receptors in other exocrine cells suggests that tissue sensitivity to DHCC is not a general property of exocrine systems.  相似文献   

15.
16.
Synposis The granules of parotid acinar cells and submandibular granular tubule cells of rats contain one or more periodic acid-Schiff positive substances that are extracted during fixation with lipid solvents or acidic solutions or if frozen sections are stained in aqueous solutions. The granules in these cells can be stained by Schmorl's reaction, Luxol Fast Blue and a permanganate-Aldehyde Fuchsin sequence. The results obtained with these stains after a variety of fixation procedures strongly suggest that the secretory granules of these two cell types contain several components and that in parotid acinar and submandibular granular tubule cells, at least one of these components is a lipoidal substance.  相似文献   

17.
The role of cell surface galactosyltransferase in mediating isoproterenol-induced parotid gland hypertrophy and hyperplasia was examined in rat parotid gland acinar cells. Introduction of the transferase modifier, alpha-lactalbumin, or galactosyltransferase-associated kinase inhibitor trifluoperazine, into beta-agonist-treated rats prevented acinar cell proliferation as determined by [3H]thymidine incorporation after 96 h of treatment. However, [3H]thymidine incorporation into DNA after 24 h of treatment, with injection of a combination of isoproterenol/alpha-lactalbumin or isoproterenol/trifluoperazine, was similar to injections of isoproterenol alone; suggesting that acinar cells could be stimulated to undergo a single round of DNA synthesis. Northern blot analysis of myc and fos expression followed a similar pattern of down-regulation to control levels after 96 h but not after 24 h. Hybridization with erb B showed little change with proliferation, confirming previous observations on protein levels of the EGF-receptor in acinar cells. Western blot analysis of nuclear protein expression of myc revealed that isoproterenol caused an increase in a 62-kDa protein which was again down-regulated with inhibition of cell proliferation. Analysis of protein levels of Rb110 protein showed no change in protein level in the nucleus with cell proliferation, but did show an associated increase in protein phosphorylation in response to growth stimulation.  相似文献   

18.
19.
Stimulation of secretion in guinea pig parotid gland lobules by either isoproterenol or carbachol is associated with a removal of acyl groups from the acyl-CoA pool and their incorporation into diacylglycerols and triglycerides (S?ling, H. D., Machado-De Domenech, E., Kleineke, J., and Fest, W. (1987) J. Biol. Chem. 262, 16786-16792). This is associated with an increased incorporation of glycerol into diacylglycerol. These changes occur during the first 20-30 s of stimulation. We can show now that these changes are associated with a significant increase in the activities of lysophosphatidate acyltransferase, diacylglycerol kinase, and diacylglycerol acyltransferase which reaches a maximum during the first 60 s after stimulation. In vitro experiments with isolated parotid microsomes, the catalytic subunit of cAMP-dependent or Ca2+/calmodulin-dependent protein kinase, and with purified protein phosphatases indicate that the activation of enzyme activities in intact parotid gland cells results from protein phosphorylation. The two protein kinases seem to activate the three enzymes by phosphorylating the same site(s). Protein kinase C was almost ineffective. Glycerol kinase, glycerolphosphate acyltransferase, phosphatidate phosphohydrolase, CTP:phosphatidate cytidylyltransferase, and phosphatidylinositol synthase remained unchanged in the intact cell as well as during incubation with protein kinases in vitro. Lysophosphatidate acyltransferase, diacylglycerol kinase, and diacylglycerol acyltransferase can be activated by the two protein kinases also in microsomes from guinea pig cerebellum. It seems, therefore, that the regulation leading to rapid changes of enzyme activities during signal transmission in parotid acinar cells could be operative also in other cell types.  相似文献   

20.
The formation and fate of cytoplasmic crystalloids in rat parotid acinar cells were investigated during ethionine intoxication and recovery. By day 3 of ethionine treatment, acinar cells had numerous autophagic vacuoles containing recognizable secretory granules and fragments of rough endoplasmic reticulum. By day 5, immature crystalloids were present in many of the autophagic vacuoles, and as the crystalloids matured, a 7-nm periodicity became apparent. Crystalloids were never observed in the Golgi saccules or in any other organelle associated with secretory granule formation. When ethionine treatment was stopped, the acinar cells rapidly returned to their normal morphology. The majority of the crystalloids and autophagic vacuoles were lost from the cells during the first two to three days of recovery. At this time annulate lamellae were present intracellularly, and macrophages, many containing crystalloids, were associated with the basal surface of the acinar cells. These results indicate that the cytoplasmic crystalloids are formed in autophagic vacuoles, and do not represent an abnormal secretory product. Additiontionally, during recovery crystalloids may be removed from the acinar cells by interaction with macrophages. The sequence of autophagic vacuole formation, development of crystalloids, macrophage infiltration and phagocytosis of acinar cell debris appears to be a non-specific response of the rat parotid gland to cellular injury occurring in a variety of experimental and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号