首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previous study of nitrite reduction by Paracoccus pantotrophus cytochrome cd1 at pH 7.0 identified early reaction intermediates. The c-heme rapidly oxidised and nitrite was reduced to NO at the d1-heme. A slower equilibration of electrons followed, forming a stable complex assigned as 55% cFe(III)d1Fe(II)-NO and 45% cFe(II)d1Fe(II)-NO+. No catalytically competent NO release was observed. Here we show that at pH 6.0, a significant proportion of the enzyme undergoes turnover and releases NO. An early intermediate, which was previously overlooked, is also identified; enzyme immediately following product release is a candidate. However, even at pH 6.0 a considerable fraction of the enzyme remains bound to NO so another component is required for full product release. The kinetically stable product formed at the end of the reaction differs significantly at pH 6.0 and 7.0, as does its rate of formation; thus the reaction is critically dependent on pH.  相似文献   

2.
Reduction of dioxygen to water is a key process in aerobic life, but atomic details of this reaction have been elusive because of difficulties in observing active oxygen intermediates by crystallography. Cytochrome cd(1) is a bifunctional enzyme, capable of catalyzing the one-electron reduction of nitrite to nitric oxide, and the four-electron reduction of dioxygen to water. The latter is a cytochrome oxidase reaction. Here we describe the structure of an active dioxygen species in the enzyme captured by cryo-trapping. The productive binding mode of dioxygen in the active site is very similar to that of nitrite and suggests that the catalytic mechanisms of oxygen reduction and nitrite reduction are closely related. This finding has implications to the understanding of the evolution of oxygen-reducing enzymes. Comparison of the dioxygen complex to complexes of cytochrome cd(1) with stable diatomic ligands shows that nitric oxide and cyanide bind in a similar bent conformation to the iron as dioxygen whereas carbon monoxide forms a linear complex. The significance of these differences is discussed.  相似文献   

3.
The pentahaem enzyme cytochrome c nitrite reductase catalyses the reduction of nitrite to ammonia, a key reaction in the biological nitrogen cycle. The enzyme can also transform nitrogen monoxide and hydroxylamine, two potential bound reaction intermediates, into ammonia. Structural and mechanistic aspects of the multihaem enzyme are discussed in comparison with hydroxylamine oxidoreductase, a trimeric protein with eight haem molecules per subunit.  相似文献   

4.
Mechanism of reaction of myeloperoxidase with nitrite   总被引:10,自引:0,他引:10  
Myeloperoxidase (MPO) is a major neutrophil protein and may be involved in the nitration of tyrosine residues observed in a wide range of inflammatory diseases that involve neutrophils and macrophage activation. In order to clarify if nitrite could be a physiological substrate of myeloperoxidase, we investigated the reactions of the ferric enzyme and its redox intermediates, compound I and compound II, with nitrite under pre-steady state conditions by using sequential mixing stopped-flow analysis in the pH range 4-8. At 15 degrees C the rate of formation of the low spin MPO-nitrite complex is (2.5 +/- 0.2) x 10(4) m(-1) s(-1) at pH 7 and (2.2 +/- 0.7) x 10(6) m(-1) s(-1) at pH 5. The dissociation constant of nitrite bound to the native enzyme is 2.3 +/- 0.1 mm at pH 7 and 31.3 +/- 0.5 micrometer at pH 5. Nitrite is oxidized by two one-electron steps in the MPO peroxidase cycle. The second-order rate constant of reduction of compound I to compound II at 15 degrees C is (2.0 +/- 0.2) x 10(6) m(-1) s(-1) at pH 7 and (1.1 +/- 0.2) x 10(7) m(-1) s(-1) at pH 5. The rate constant of reduction of compound II to the ferric native enzyme at 15 degrees C is (5.5 +/- 0.1) x 10(2) m(-1) s(-1) at pH 7 and (8.9 +/- 1.6) x 10(4) m(-1) s(-1) at pH 5. pH dependence studies suggest that both complex formation between the ferric enzyme and nitrite and nitrite oxidation by compounds I and II are controlled by a residue with a pK(a) of (4.3 +/- 0.3). Protonation of this group (which is most likely the distal histidine) is necessary for optimum nitrite binding and oxidation.  相似文献   

5.
The Cu-containing nitrite reductase from Hyphomicrobium denitrificans (HydNIR) has been spectroscopically and functionally characterized. The visible absorption spectrum implies that the enzyme has two type 1 Cu ions in one subunit (ca. 50 kDa). The electron paramagnetic resonance (EPR) spectrum of HydNIR is simulated assuming the sum of three distinct S = 1/2 systems: two type 1 Cu signals (axial and rhombic symmetries) and one type 2 Cu signal. The intramolecular electron transfer reaction from the type 1 Cu to the type 2 Cu at pH 6.0 does not occur in the absence of nitrite, but a very slow electron transfer reaction is observed in the presence of nitrite. The apparent first-order rate constants for the intramolecular electron transfer reactions (k(ET(intra))) in the presence of nitrite and also the apparent catalytic rate constants (k(cat)) of HydNIR decrease gradually with increasing pH in the range of pH 4.5-7.5. These pH profiles are substantially similar to each other, suggesting that the intramolecular electron transfer process is linked to the subsequent nitrite reduction process.  相似文献   

6.
Nagababu E  Ramasamy S  Rifkind JM 《Biochemistry》2007,46(41):11650-11659
The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.  相似文献   

7.
The reactions of nitric oxide (NO) with the turnover intermediates of cytochrome c oxidase were investigated by combining amperometric and spectroscopic techniques. We show that the complex of nitrite with the oxidized enzyme (O) is obtained by reaction of both the "peroxy" (P) and "ferryl" (F) intermediates with stoichiometric NO, following a common reaction pathway consistent with P being an oxo-ferryl adduct. Similarly to chloride-free O, NO reacted with P and F more slowly [k approximately (2-8) x 10(4) M(-1) s(-1)] than with the reduced enzyme (k approximately 1 x 10(8) M(-1) s(-1)). Recovery of activity of the nitrite-inhibited oxidase, either during turnover or after a reduction-oxygenation cycle, was much more rapid than nitrite dissociation from the fully oxidized enzyme (t(1/2) approximately 80 min). The anaerobic reduction of nitrite-inhibited oxidase produced the fully reduced but uncomplexed enzyme, suggesting that reversal of inhibition occurs in turnover via nitrite dissociation from the cytochrome a(3)-Cu(B) site: this finding supports the hypothesis that oxidase may have a physiological role in the degradation of NO into nitrite. Kinetic simulations suggest that the probability for NO to be transformed into nitrite is greater at low electron flux through oxidase, while at high flux the fully reduced (photosensitive) NO-bound oxidase is formed; this is fully consistent with our recent finding that light releases the inhibition of oxidase by NO only at higher reductant pressure [Sarti, P., et al. (2000) Biochem. Biophys. Res. Commun. 274, 183].  相似文献   

8.
Electron transfer over 12.6 A from the type 1 copper (T1Cu) to the type 2 copper (T2Cu) was investigated in the copper-containing nitrite reductases from two denitrifying bacteria (Alcaligenes xylosoxidans GIFU 1051 and Achromobacter cycloclastes IAN 1013), following pulse radiolytical reduction of T1Cu. In the presence of nitrite, the rate constant for the intramolecular electron transfer of the enzyme from A. xylosoxidans decreased 1/2 fold to 9 x 10(2) s-1 (20 degrees C, pH 7.0) as compared to that for the same process in the absence of nitrite. However, the rate constant increased with decreasing pH to become the same (2 x 10(3) s-1) as that in the absence of nitrite at pH 6.0. A similar result was obtained for the enzyme from A. cycloclastes. The pH profiles of the two enzymes in the presence of nitrite are almost the same as that of the enzyme activity of nitrite reduction. This suggests that the intramolecular electron transfer process is closely linked to the following process of catalytic reduction of nitrite. The difference in redox potential (DeltaE) of T2Cu minus T1Cu was calculated from equilibrium data for the electron transfer. The pH-dependence of DeltaE was in accord with the equation: DeltaE = DeltaE(0)+0.058 log (Kr[H+]+[H+]2)/(K(0)+[H+]), where K(r) and K(0) are the proton dissociation constants for the oxidized and reduced states of T2Cu, respectively. These results raise the possibility that amino acid residues linked by the redox of T2Cu play important roles in the enzyme reaction, being located near T2Cu.  相似文献   

9.
2-Hydroxybiphenyl 3-monooxygenase (EC 1.14.13.44) from Pseudomonas azelaica HBP1 is an FAD-dependent aromatic hydroxylase that catalyzes the conversion of 2-hydroxybiphenyl to 2, 3-dihydroxybiphenyl in the presence of NADH and oxygen. The catalytic mechanism of this three-substrate reaction was investigated at 7 degrees C by stopped-flow absorption spectroscopy. Various individual steps associated with catalysis were readily observed at pH 7.5, the optimum pH for enzyme turnover. Anaerobic reduction of the free enzyme by NADH is a biphasic process, most likely reflecting the presence of two distinct enzyme forms. Binding of 2-hydroxybiphenyl stimulated the rate of enzyme reduction by NADH by 2 orders of magnitude. The anaerobic reduction of the enzyme-substrate complex involved the formation of a transient charge-transfer complex between the reduced flavin and NAD(+). A similar transient intermediate was formed when the enzyme was complexed with the substrate analog 2-sec-butylphenol or with the non-substrate effector 2,3-dihydroxybiphenyl. Excess NAD(+) strongly stabilized the charge-transfer complexes but did not give rise to the appearance of any intermediate during the reduction of uncomplexed enzyme. Free reduced 2-hydroxybiphenyl 3-monooxygenase reacted rapidly with oxygen to form oxidized enzyme with no appearance of intermediates during this reaction. In the presence of 2-hydroxybiphenyl, two consecutive spectral intermediates were observed which were assigned to the flavin C(4a)-hydroperoxide and the flavin C(4a)-hydroxide, respectively. No oxygenated flavin intermediates were observed when the enzyme was in complex with 2, 3-dihydroxybiphenyl. Monovalent anions retarded the dehydration of the flavin C(4a)-hydroxide without stabilization of additional intermediates. The kinetic data for 2-hydroxybiphenyl 3-monooxygenase are consistent with a ternary complex mechanism in which the aromatic substrate has strict control in both the reductive and oxidative half-reaction in a way that reactions leading to substrate hydroxylation are favored over those leading to the futile formation of hydrogen peroxide. NAD(+) release from the reduced enzyme-substrate complex is the slowest step in catalysis.  相似文献   

10.
Some similarity is inferred between the reaction or reduced benzyl viologen with undissociated nitrous acid, which is significant at pH values below 7 and that with the undissociated product of nitrite ion and ammonium sulphate; presumably ammonium nitrite. This would explain why the presence of ammonium sulphate appreciably offsets the effects of decreasing pH and also the exponential relationship between rate of nitrite loss and ammonium sulphate concentration. There are other features of the reaction which cannot be explained at present, especially with regard to the degree of reduction of benzyl viologen. It is nevertheless apparent that a complex non-enzymic reaction yielding several products occurs when ammonium sulphate is present and that the presence of likely residual quantities after its use in enzyme purification may cause serious errors in enzyme assay.  相似文献   

11.
Wijma HJ  Canters GW  de Vries S  Verbeet MP 《Biochemistry》2004,43(32):10467-10474
The copper-containing nitrite reductase from Alcaligenes faecalis S-6 was found to catalyze the oxidation of nitric oxide to nitrite, the reverse of its physiological reaction. Thermodynamic and kinetic constants with the physiological electron donor pseudoazurin were determined for both directions of the catalyzed reaction in the pH range of 6-8. For this, nitric oxide was monitored by a Clark-type electrode, and the redox state of pseudoazurin was measured by optical spectroscopy. The equilibrium constant (K(eq)) depends on the reduction potentials of pseudoazurin and nitrite/nitric oxide, both of which vary with pH. Above pH 6.2 the formation of NiR substrates (nitrite and reduced pseudoazurin) is favored over the products (NO and oxidized pseudoazurin). At pH 8 the K(eq) amounts to 10(3). The results show that dissimilatory nitrite reductases catalyze an unfavorable reaction at physiological pH (pH = 7-8). Consequently, nitrous oxide production by copper-containing nitrite reductases is unlikely to occur in vivo with a native electron donor. With increasing pH, the rate and specificity constant of the forward reaction decrease and become lower than the rate of the reverse reaction. The opposite occurs for the rate of the reverse reaction; thus the catalytic bias for nitrite reduction decreases. At pH 6.0 the k(cat) for nitrite reduction was determined to be 1.5 x 10(3) s(-1), and at pH 8 the rate of the reverse reaction is 125 s(-1).  相似文献   

12.
The reaction between reduced Pseudomonas nitrite reductase and nitrite has been studied by stopped-flow and rapid-freezing EPR spectroscopy. The interpretation of the kinetics at pH 8.0 is consistent with the following reaction mechanism (where k1 and k3 much greater than k2). [formula: see text] The bimolecular step (Step 1) is very fast, being lost in the dead time of a rapid mixing apparatus; the stoichiometry of the complex has been estimated to correspond to one NO2- molecule/heme d1. The final species is the fully reduced enzyme with NO bound to heme d1; and at all concentrations of nitrite, there is no evidence for dissociation of NO or for further reduction of NO to N2O. Step 2 is assigned to an internal electron transfer from heme c to reduced NO-bound heme d1 occurring with a rate constant of 1 s-1; this rate is comparable to the rate of internal electron transfer previously determined when reducing the oxidized enzyme with azurin or cytochrome c551. When heme d1 is NO-bound, the rate at which heme c can accept electrons from ascorbate is remarkably increased as compared to the oxidized enzyme, suggesting an increase in the redox potential of the latter heme.  相似文献   

13.
Paracoccus pantotrophus cytochrome cd(1) is an enzyme of bacterial respiration, capable of using nitrite in vivo and also hydroxylamine and oxygen in vitro as electron acceptors. We present a comprehensive analysis of the steady state kinetic properties of the enzyme with each electron acceptor and three electron donors, pseudoazurin and cytochrome c(550), both physiological, and the non-physiological horse heart cytochrome c. At pH 5.8, optimal for nitrite reduction, the enzyme has a turnover number up to 121 s(-1) per d(1) heme, significantly higher than previously observed for any cytochrome cd(1). Pre-activation of the enzyme via reduction is necessary to establish full catalytic competence with any of the electron donor proteins. There is no significant kinetic distinction between the alternative physiological electron donors in any respect, providing support for the concept of pseudospecificity, in which proteins with substantially different tertiary structures can transfer electrons to the same acceptor. A low level hydroxylamine disproportionase activity that may be an intrinsic property of cytochromes c is also reported. Important implications for the enzymology of P. pantotrophus cytochrome cd(1) are discussed and proposals are made about the mechanism of reduction of nitrite, based on new observations placed in the context of recent rapid reaction studies.  相似文献   

14.
Nitrite reductases found in plants, algae, and cyanobacteria catalyze the six-electron reduction of nitrite to ammonia with reduced ferredoxin serving as the electron donor. They contain one siroheme and one [4Fe-4S] cluster, acting as separate one-electron carriers. Nitrite is thought to bind to the siroheme and to remain bound until its complete reduction to ammonia. In the present work the enzyme catalytic cycle, with ferredoxin reduced by photosystem 1 as an electron donor, has been studied by EPR and laser flash absorption spectroscopy. Substrate depletion during enzyme turnover, driven by a series of laser flashes, has been demonstrated. A complex of ferrous siroheme with NO, formed by two-electron reduction of the enzyme complex with nitrite, has been shown to be an intermediate in the enzyme catalytic cycle. The same complex can be formed by incubation of free oxidized nitrite reductase with an excess of nitrite and ascorbate. Hydroxylamine, another putative intermediate in the reduction of nitrite catalyzed by nitrite reductase, was found to react with oxidized nitrite reductase to produce the same ferrous siroheme-NO complex, with a characteristic formation time of about 13 min. The rate-limiting step for this reaction is probably hydroxylamine binding to the enzyme, with the conversion of hydroxylamine to NO at the enzyme active site likely being much faster.  相似文献   

15.
Cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri catalyzes the one electron reduction of nitrite to nitric oxide. It is a homodimer, each monomer containing one heme-c and one heme-d(1), the former being the electron uptake site while the latter is the nitrite reduction site. Hence, internal electron transfer between these sites is an inherent element in the catalytic cycle of this enzyme. We have investigated the internal electron transfer reaction employing pulse radiolytically produced N-methyl nicotinamide radicals as reductant which reacts solely with the heme-c in an essentially diffusion controlled process. Following this initial step, the reduction equivalent is equilibrating between the c and d(1) heme sites in a unimolecular process (k=23 s(-1), 298 K, pH 7.0) and an equilibrium constant of 1.0. The temperature dependence of this internal electron transfer process has been determined over a 277-313 K temperature range and yielded both equilibrium standard enthalpy and entropy changes as well as activation parameters of the specific rate constants. The significance of these parameters obtained at low degree of reduction of the enzyme is discussed and compared with earlier studies on cd(1) nitrite reductases from other sources.  相似文献   

16.
Electron nuclear double resonance (ENDOR) of protons at Type 2 and Type 1 cupric active sites correlates with the enzymatic pH dependence, the mutation of nearby conserved, nonligating residues, and electron transfer in heterologously expressed Rhodobacter sphaeroides nitrite reductase. Wild-type enzyme showed a pH 6 activity maximum but no kinetic deuterium isotope effect, suggesting protons are not transferred in the rate-limiting step of nitrite reduction. However, protonatable Asp129 and His287, both located near the Type 2 center, modulated enzyme activity. ENDOR of the wild-type Type 2 center at pH 6.0 revealed an exchangeable proton with large hyperfine coupling. Dipolar distance estimates indicated that this proton was 2.50-2.75 or 2.25-2.45 A from Type 2 copper in the presence or absence of nitrite, respectively. This proton may provide a properly oriented hydrogen bond to enhance water formation upon nitrite reduction. This proton was eliminated at pH 5.0 and showed a diminished coupling at pH 7.5. Mutations of Asp129 and His287 reduced enzyme activity and altered the exchangeable proton hyperfine spectra. Mutation of Asp129 prevented a pH-dependent change at the Type 1 Cys167 ligand as observed by Cys C(beta) proton ENDOR, implying there is a Type 2 and pH-dependent alteration of the Type 1 center. Mutation of the Type 1 center ligand Met182 to Thr and mutation of Asp129 increased the activation energy for nitrite reduction. Involvement of both the Type 1 center and Asp129 in modulating activation energy shows that electron transfer from the Type 1 center to a nitrite-ligated Type 2 center is rate-limiting for nitrite reduction. Mutation of Ile289 to Ala and Val caused minor perturbation to enzyme activity, but as detected by ENDOR, allowed formate binding. Thus, bulky Ile289 may exclude non-nitrite ligands from the Type 2 active site.  相似文献   

17.
The cytochrome c nitrite reductases perform a key step in the biological nitrogen cycle by catalyzing the six-electron reduction of nitrite to ammonium. Graphite electrodes painted with Escherichia coli cytochrome c nitrite reductase and placed in solutions containing nitrite (pH 7) exhibit large catalytic reduction currents during cyclic voltammetry at potentials below 0 V. These catalytic currents were not observed in the absence of cytochrome c nitrite reductase and were shown to originate from an enzyme film engaged in direct electron exchange with the electrode. The catalytic current-potential profiles observed on progression from substrate-limited to enzyme-limited nitrite reduction revealed a fingerprint of catalytic behavior distinct from that observed during hydroxylamine reduction, the latter being an alternative substrate for the enzyme that is reduced to ammonium in a two electron process. Cytochrome c nitrite reductase clearly interacts differently with these two substrates. However, similar features underlie the development of the voltammetric response with increasing nitrite or hydroxylamine concentration. These features are consistent with coordinated two-electron reduction of the active site and suggest that the mechanisms for reduction of both substrates are underpinned by common rate-defining processes.  相似文献   

18.
Mammalian xanthine oxidase (XO) and Desulfovibrio gigas aldehyde oxidoreductase (AOR) are members of the XO family of mononuclear molybdoenzymes that catalyse the oxidative hydroxylation of a wide range of aldehydes and heterocyclic compounds. Much less known is the XO ability to catalyse the nitrite reduction to nitric oxide radical (NO). To assess the competence of other XO family enzymes to catalyse the nitrite reduction and to shed some light onto the molecular mechanism of this reaction, we characterised the anaerobic XO- and AOR-catalysed nitrite reduction. The identification of NO as the reaction product was done with a NO-selective electrode and by electron paramagnetic resonance (EPR) spectroscopy. The steady-state kinetic characterisation corroborated the XO-catalysed nitrite reduction and demonstrated, for the first time, that the prokaryotic AOR does catalyse the nitrite reduction to NO, in the presence of any electron donor to the enzyme, substrate (aldehyde) or not (dithionite). Nitrite binding and reduction was shown by EPR spectroscopy to occur on a reduced molybdenum centre. A molecular mechanism of AOR- and XO-catalysed nitrite reduction is discussed, in which the higher oxidation states of molybdenum seem to be involved in oxygen-atom insertion, whereas the lower oxidation states would favour oxygen-atom abstraction. Our results define a new catalytic performance for AOR—the nitrite reduction—and propose a new class of molybdenum-containing nitrite reductases.  相似文献   

19.
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction.  相似文献   

20.
Some recent studies on the pathway of nitrogen and the reductases of denitrification are reviewed. The available evidence suggests that while the intermediates of denitrification can remain enzyme-bound (presumably to nitrite reductase) prior to formation of N2O, NO and nitroxyl (HNO) can be released in part by certain bacteria. Release of NO is recognized by a nitrite/NO?15N exchange reaction and isotopic scrambling in product N2O; release of nitroxyl by Pseudomonas stutzeri is recognized by isotopic scrambling of nitrite and NO in product N2O in absence of exchange and affords evidence that the first N?N bond forms in denitrification at the N1+ redox level. The recent purification and partial characterization of nitrous oxide reductase are described. The ability of the dissimilatory nitrite reductase to activate nitrite for nitrosyl transfer affords a new chemical probe into the mechanism of action of this central enzyme. It would appear that reduction of nitrite is subject to electrophilic catalysis. 18O studies show that dissociation of nitrite from nitrite reductase can be slow relative to competing reduction or nitrosyl transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号