首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
South Africa has some of the most eutrophic aquatic systems in the world, as a result of the adoption of an unnecessarily high 1 mg l−1 phosphorus (P) standard for all water treatment works in the 1970 s. The floating aquatic macrophyte, water hyacinth (Eichhornia crassipes (Mart.) Solms (Pontederiaceae)), has taken advantage of these nutrient rich systems, becoming highly invasive and damaging. Despite the implementation of a biological control programme in South Africa, water hyacinth remains the worst aquatic weed. A meta-analysis of published and unpublished laboratory studies that investigated the combined effect of P and nitrogen (N) water nutrient concentration and control agent herbivory showed that water nutrient status was more important than herbivory in water hyacinth growth. Analysis of long-term field data collected monthly from 14 sites around South Africa between 2004 and 2005 supported these findings. Therefore the first step in any water hyacinth control programme should be to reduce the nutrient status of the water body.  相似文献   

2.
The socio-economic impacts of the free-floating aquatic plant water hyacinth, Eichhornia crassipes (Pontederiaceae), on aquatic systems are well documented, yet the impacts on aquatic biodiversity, particularly invertebrate biodiversity, are less well understood. This study aimed to determine whether the presence of water hyacinth altered the diversity and assemblage structure of benthic macroinvertebrates in a conservation area. The benthic macroinvertebrate assemblage was sampled over 1 year at five sites under water hyacinth mats and at five sites without water hyacinth at Lake Nsezi—Nseleni River in the vicinity of Richards Bay, KwaZulu-Natal, South Africa. Artificial substrates were placed beneath water hyacinth mats or in the open water to allow for colonization by freshwater macroinvertebrates, and left for a period of 6 weeks, repeated on seven occasions. Twenty nine families comprising 18,797 individuals were collected, 817 (13 families) individuals were from under water hyacinth mat sites compared to 17,980 (27 families) individuals from open water sites. Ninety-eight percent of individuals collected were, however, the invasive snail, Tarebia granifera. Open water samples were separated from samples beneath the water hyacinth mat by non-metric Multidimensional Scaling, indicating reduced biodiversity associated with the presence of water hyacinth. Exclusion of the dominant Thiaridae from the analysis did not alter the groupings. Family richness(s) and abundance (N) were significantly higher in open water communities(S: H3 = 21.09; P = 0.0001; N: H3 = 22.58; P = 0.00001), while evenness (J’) was higher under water hyacinth mats (H3 = 20.13; P = 0.0002). The presence of water hyacinth had a significantly negative impact on aquatic macroinvertebrate biodiversity in a conservation area, and therefore the control of this invasive aquatic plant must play a major role in catchment management.  相似文献   

3.
Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.  相似文献   

4.
Water hyacinth Eichhornia crassipes (Pontederiaceae) is one of the world's worst invasive species, responsible for damaging aquatic systems in many warmer parts of the globe including north America, Africa, Asia and Australia. The planthopper Megamelus scutellaris Berg (Delphacidae) has been released in USA and approved for release in South Africa for biocontrol of water hyacinth. We assessed this agent for suitability for release in Australia and found that a related native aquatic plant, Monochoria cyanea (Pontederiaceae) is within the fundamental host range of this insect. Adult survival, oviposition and development of nymphs to adult was equally high on M. cyanea as on the target species, although the quality of these next generation adults was lower than those reared on the target species. This demonstrates that M. scutellaris is not sufficiently specific for release in Australia. Nymphal development to adults occurred only in very low numbers on the three other Australian species of Monochoria. M. cyanea only occurs in Australia so M. scutellaris is still a possible water hyacinth biocontrol candidate for other regions depending on the results of assessment of the risk to local species of Monochoria. This study demonstrates the effectiveness of modern biocontrol agent assessment and reinforces the importance of testing of local non-target species.  相似文献   

5.
The integrated control of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) has become necessary in South Africa, as biological control alone is perceived to be too slow in controlling the weed. In total, seven insect biological control agents have been released on water hyacinth in South Africa. At the same time, herbicides are applied by the water authorities in areas where the weed continues to be troublesome. This study investigated the assumption that the two control methods are compatible by testing the direct toxicity of a range of herbicide formulations and surfactants on two of the biological control agents released against water hyacinth, the weevil, Neochetina eichhorniae Warner (Coleoptera: Curculionidae) and the water hyacinth mirid, Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae). A number of the formulations used resulted in significant mortality of the mirid and the weevil. Products containing 2,4-D amine and diquat as active ingredients caused higher mortality of both agents (up to 80% for the mirid) than formulations containing glyphosate. Furthermore, when surfactants were added to enhance herbicide efficiency, it resulted in increased toxicity to the insects. We recommend that glyphosate formulations should be used in integrated control programmes, and that surfactants be avoided in order to reduce the toxic nature of spray formulations to the insect biological control agents released against water hyacinth.  相似文献   

6.
Water hyacinth [Eichhornia crassipes (Mart.) Solms (Pontederiaceae)] is the most damaging aquatic weed in South Africa, where five arthropod biological control agents have been released against it. The most recent introduction of Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) has failed to establish permanent populations at a number of sites in South Africa where water hyacinth is a problem. Cold winter temperatures at these sites are assumed to be the reason for these establishment failures. This assumption was tested by investigating the thermal physiology of the mirid, then incorporating these data into various predictive distribution models. Degree‐day models predict 3–14 generations per year at different localities in South Africa, and five generations at a Johannesburg site where the mirid failed to overwinter. The inability to develop sufficiently rapidly during winter months may hinder overwintering of this insect, which was predicted to develop through only one generation during the winter months of April to August in Johannesburg. A CLIMEX model also showed that cold stress limits the mirid's ability to overwinter in the interior of the country, while determination of the lower lethal limit (–3.5 °C) and critical thermal minimum (1.2 ± 1.17 °C) also indicated that extreme temperatures will limit establishment at certain sites. It is concluded that E. catarinensis is limited in its distribution in South Africa by low winter temperatures.  相似文献   

7.
A mirid,Eccritotarsus catarinensis(Carvalho), was studied as a potentially damaging natural enemy for water hyacinth, (Eichhornia crassipes(Mart.) Solms-Laub.), in South Africa. In the laboratory, eggs were inserted into the leaf tissue parallel to the leaf surface. The four nymphal instars fed gregariously with the adults mainly on the undersurface of the leaves, causing severe chlorosis at high population levels. The duration of immature stages (egg and nymphs) was approximately 23 days, while the adults survived for approximately 50 days. Favorable biological characteristics ofE. catarinensisincluded a high rate of increase, gregarious habits, long-lived and mobile adults, and several generations per year. Laboratory host range of the mirid was determined by adult choice trials on 67 plant species in 36 families and adult no-choice trials on five species in the Pontederiaceae. Feeding was recorded on all Pontederiaceae tested and oviposition on four of the five species. However, these plant species proved to be inferior hosts forE. catarinensisin comparison to water hyacinth, suggesting thatE. catarinensiswould be an acceptable natural enemy for water hyacinth in South Africa.  相似文献   

8.
Between one and seven biological control agents have been released against water hyacinth (Eichhornia crassipes (Mart.) Solms) in at least 30 countries, with varied success. A mirid, Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae), the most recent agent released, is damaging to the plant on the African continent. It could be useful in the USA where water hyacinth remains a problem, but its introduction remains in doubt because during host specificity trials, it developed on Pontederia cordata L. (pickerelweed), indigenous to the USA. However, it did not establish on pickerelweed monocultures during South African field trials, and only light spillover feeding occurred where the two plants coexisted suggesting that the use of P. cordata as a host is a laboratory artefact and it may be suitable for use in the USA, if its thermal physiology allows establishment. We reran models developed for South Africa using CLIMEX to predict whether the mirid will establish where water hyacinth and pickerelweed co-occur, but not where pickerelweed occurs in the absence of water hyacinth. The models suggest that the mirid's distribution will be limited by cold winter temperatures and insufficient thermal accumulation to the southern states of the USA, within the main distribution of water hyacinth. Even though some spillover feeding on pickerelweed might result where the two plants co-occur, the risk of population level effects seems minimal and the risk to more northern pickerelweed negligible. The benefits, including improved habitat for pickerelweed, associated with further suppression of water hyacinth, outweigh the minimal risk of collateral damage to pickerelweed.  相似文献   

9.
In many parts of the world, excess growth of Eichhornia crassipes (Pontederiaceae) poses a serious threat to aquatic environments. In Cameroon, where manual clearing is still undertaken, little is known about fungal diversity associated with the plant, or its potential for biological control. Surveys of the Wouri River Basin in the Littoral Region of Cameroon were conducted during a rainy season (May–October 2014) and a dry season (November 2015–April 2016) at various sites, to identify fungi associated with water hyacinth. Fungi were isolated and identified from symptomatic plant parts collected. In the rainy season, 130 fungal isolates belonging to 12 genera were identified morphologically, whereas 299 isolates belonging to 23 genera were identified during the dry season. With the exception of Fusarium oxysporum and Phytophthora sp., the genera represented new records for Cameroon, and Chaetomium strumarium, Colletotrichum gloesporioides, C. acutatum, C. dematium, Curvularia pallescens and Pytomyces chartarum were considered new host records for E. crassipes in Africa. Isolates of Acremonium zonatum, Chaetomium strumarium, Alternaria eichhorniae, Phytophthora sp. and Rhizoctonia sp. showed the highest frequency of occurrence on E. crassipes in the Wouri River Basin and, given their record as plant pathogens, could be potentially useful in the development of mycoherbicides for this weed in Cameroon.  相似文献   

10.
Taosa longula Remes Lenicov (Hemiptera: Dictyopharidae) is a planthopper from the South American tropics that feeds on water hyacinth, Eichhornia crassipes (Mart.) Solms-Laubach (Pontederiaceae). The biology of T. longula was studied in the laboratory and field to evaluate it as a potential biological control agent for this widespread aquatic weed. The developmental time of nymphs was recorded at different temperatures (15, 19, 23, 25, 27 and 30 °C), and developmental threshold temperatures were obtained for the different instars. The host range was evaluated in terms of development and feeding preference. Development from instar I to adult was recorded in two no-choice trials, one with cut leaves of Pontederiaceae, and a second with growing whole plants. In the cut-leaf tests, adults were obtained from Pontederia cordata var. cordata, P. rotundifolia and water hyacinth. In the whole plant test, T. longula adults were obtained only from water hyacinth. Feeding preference was evaluated by means of a paired-choice test with 10 T. longula first instars on whole plants of P. c. cordata, P. rotundifolia and water hyacinth. The number of insects that fed on water hyacinth was significantly higher than on P. c. cordata and P. rotundifolia. Taosa longula showed a clear preference for water hyacinth and exhibited warm climate requirements, making it an attractive candidate for water hyacinth biological control in tropical and subtropical areas.  相似文献   

11.
The semi‐aquatic grasshopper Cornops aquaticum (Bruner, 1906) is native to South America, with a distribution from the Argentinian pampas to the Gulf of Mexico, and is currently being proposed as a biological control agent for the invasive water hyacinth (Eichhornia crassipes) in South Africa. This study reports results of a neutral molecular marker (microsatellites) study on C. aquaticum within its native range. The data were analysed for levels of diversity and structure within/between South American populations, and correlations between host plant, geography and environmental/climatic variables were investigated. We found no evidence to support associations between host plant use and microsatellite genotypes (hypothesis 1). High levels of gene flow and weak genetic clustering of populations indicate a lack of differentiation, therefore an interaction between climate and local genotype (hypothesis 2) seems unlikely. Our results suggest that C. aquaticum may not have “tightly” coevolved with its host Eichhornia spp. (Pontederiaceae) as originally thought, and that instar variation might be due to the effect of local climate on phenotype (hypothesis 3) or possibly a locally adaptive trait.  相似文献   

12.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   

13.
Invasive plants may change ecologic conditions to contribute to transmission of human diseases. This study examined whether water hyacinth (Eichhornia crassipes) had an effect on the snails Biomphalaria sudanica and B. choanomphala, hosts of the disease organism Schistosoma mansoni in Lake Victoria, East Africa. Eight 16-m2 enclosures were established in shallow shoreline areas and were paired for water depth, substrate, detrital build up, and distance from rooted vegetation, agricultural runoff, and human activity. In each enclosure, nine randomly selected sediment samples were collected by using a Petite Ponar Dredge, after which 50 water hyacinth rosettes were added to the experimental enclosure within each pair. Six weeks later, nine randomly selected sediment samples were again collected, as were two water hyacinth rosettes from the water column above each sampling point. During the 6 weeks, water hyacinth density had increased from 50 to approximately 2400 rosettes in each enclosure. Adult B. sudanica and unidentified snail egg masses were observed on sampled water hyacinth petioles. Biomphalaria sudanica density was significantly higher in enclosures with water hyacinth (P=0.034); snail size suggested that this difference was due to passive or active immigration rather than increased reproduction, but snail emigration or greater predation in control enclosures may also have contributed.  相似文献   

14.
Water hyacinth, Eichhornia crassipes (Mart) Solms, originating in the amazonian basin, is a warm water aquatic plant. Water hyacinth is considered one of the most productive plants on earth and, accordingly, is considered one of the top ten world''s worst weeds. Water hyacinth spread to other tropical and subtropical regions by humans. It invaded about 62 countries in Africa, Asia and North America, and propagated extremely serious ecological, economical and social problems in the region between 40 degrees north and 45 degrees south. The dense weed of water hyacinth forms dense monocultures that can threaten local native species diversity and change the physical and chemical aquatic environment, thus altering ecosystem structure and function by disrupting food chains and nutrient cycling. We have separated and identified nine active fractions from water hyacinth and showed their promising therapeutic activities. Several compounds (alkaloid, phthalate derivatives, propanoid and phenyl derivatives) were identified in the extract of water hyacinth.Key words: water hyacinth, antimicrobial, anticancer, active compounds  相似文献   

15.
ABSTRACT

Water hyacinth, Pontederia crassipes (Martius) [≡Eichhornia crassip es (Martius) Solms-Laubach] (Pontederiaceae), is native to South America, but has expanded its range to many other regions of the world including South Africa. Megamelus scutellaris Berg (Hemiptera: Delphacidae) was released as a biological control agent and has established in several regions. Recently, the indigenous species Echthrodelphax migratorius Benoit, (Hymenoptera: Dryinidae) was discovered in South Africa parasitising M. scutellaris. This newly discovered relationship might have repercussions for the efficacy of biological control of water hyacinth by the delphacid. The wasp may negatively impact M. scutellaris populations making it difficult for the agent to successfully manage the invasive weed. Contrarily, the parasitoid may be beneficial by keeping the M. scutellaris populations stable, serving as a natural enemy.  相似文献   

16.
Water hyacinth is considered the most damaging aquatic weed in South Africa. The success of biocontrol initiatives against the weed varies nation-wide, but control remains generally unattainable in higher altitude, temperate regions. Eccritotarsus catarinensis (Hemiptera: Miridae) is a biocontrol agent of water hyacinth that was first released in South Africa in 1996. By 2011, it was established at over 30 sites across the country. These include the Kubusi River, a site with a temperate climate where agent establishment and persistence was unexpected. This study compared the critical thermal limits of the Kubusi River insect population with a laboratory-reared culture to determine whether any physiological plasticity was evident that could account for its unexpected establishment. There were no significant differences in critical thermal maxima (CTmax) or minima (CTmin) between sexes, while the effect of rate of temperature change on the thermal parameters in the experiments had a significant impact in some trials. Both CTmax and CTmin differed significantly between the two populations, with the field individuals tolerating significantly lower temperatures (CTmin: ?0.3°C?±?0.063 [SE], CTmax: 42.8°C?±?0.155 [SE]) than those maintained in the laboratory (CTmin: 1.1°C?±?0.054 [SE], CTmax: 44.9°C?±?0.196 [SE]). Acclimation of each population to the environmental conditions typical of the other for a five-day period illustrated that short-term acclimation accounted for some, but not all of the variation between their lower thermal limits. This study provides evidence for the first cold-adapted strain of E. catarinensis in the field, with potential value for introduction into other colder regions where water hyacinth control is currently unattainable.  相似文献   

17.
In a study to isolate fungal pathogens with potential for the biocontrol of water hyacinth (Eichhornia crassipes), some lakes in the Lagos State and its environs, Nigeria, were surveyed for diseased water hyacinth (E. crassipes). The fungi present in the diseased tissue were isolated and identified as: Aspergillus niger, Aspergillus flavus, Penicillium sp., Curvularia pallescens, Fusarium solani and Myrothecium roridum. The pathogenicity of isolates of these fungi on fresh, non-diseased water hyacinth plants was investigated. Myrothecium was the only species capable of inducing disease symptoms. Necrosis was observed on water hyacinth leaves three days post inoculation (DPI) with M. roridum (1 × 106 spores/ml). The leaves and the petioles were withered at the end of day 24, and the disease incidence and disease severity were 100% and 8.67%, respectively. Molecular analysis of the internal transcribed spacer rDNA of the M. roridum isolate from water hyacinth showed >98% homology to authenticated sequences of M. roridum. The isolate, deposited at the International Mycological Institute, UK, as M. roridum Tode: Fries (IMI 394934), possesses the level of virulence needed in a potential mycoherbicide for use in the management of water hyacinth.  相似文献   

18.
Eradicating or controlling invasive alien species has frequently had unintended consequences, such as proliferation of other invasive species or loss of ecosystem function. We explore this problem using a case study of a highly invasive floating aquatic macrophyte, water hyacinth (Eichhornia crassipes), in the Sacramento-San Joaquin Delta of California. We used 5 years of remote sensing data to perform change detection analysis to study plant community dynamics contemporaneous with changes in water hyacinth cover. Our results show that as water hyacinth cover decreased, submerged aquatic plant (SAP) cover increased and vice versa. This effect was strongest in large patches of water hyacinth. We found no evidence that the native floating aquatic species, pennywort (Hydrocotyle umbellata), benefitted from reducing cover of water hyacinth. In most years, pennywort cover either showed no trend or followed the same trajectory as water hyacinth cover. In this study a decrease in cover of water hyacinth most often resulted in colonization by SAP species with some habitat returning to open water.  相似文献   

19.
Abé  Hiroshi 《Hydrobiologia》2001,452(1-3):79-88
This study examined the impacts of the alien waterweed, water hyacinth, on the abundance and diversity of aquatic macroinvertebrates in the littoral areas of northern Lake Victoria in Uganda. The weed had undergone explosive growth on the lake causing serious disruption to people, the economy and the ecosystem. This study was confined to impact of the weed in the littoral zone, not to the large floating mats of vegetation which float across the lake and clog large areas of shoreline.The littoral area studied comprised of fringing mats of Eichhornia crassipes (Mart) Solms (water hyacinth) to the lakeward of Cyperus papyrus; water hyacinth mats undergoing colonisation by Vossia cuspidata (Roxb.) Griff.; and a typical Cyperus papyrus L shore with no outer floating mat of water hyacinth. Numerical abundance (Nos. m–2) and diversity (No. of taxa) of macroinvertebrates recovered from pure Eichhornia crassipes and the Eichhornia-Vossia succession increased from the fringe of the Cyperus papyrus towards the open water. In the typical Cyperus papyrus fringe, in the absence of water hyacinth, abundance was highest at the papyrus/open water interface and dropped off sharply towards open water. The Shannon–Weaver diversity index (H) of macroinvertebrates decreased progressively from pure Eichhornia crassipes stands, to Vossia/Eichhornia beds and Cyperus papyrus stands (H=0.56, 0.54 and 0.34, respectively) but were not significantly different. Dissolved oxygen decreased from open water into vegetation where it approached anoxia. Water hyacinth appeared to enhance the abundance and diversity of aquatic macroinvertebrates at the interface with the open water. The impoverished abundance and diversity of the macroinvertebrates deeper into the vegetation mats suggested negative environmental impacts of the water hyacinth when the fringe is too wide. Further research is recommended to establish the optimum width of the fringe of stationery water hyacinth that promotes maximum abundance and diversity of aquatic macroinvertebrates and, possibly, of other aquatic life. Since this study in 1997, there has been a dramatic decrease in Eichhornia infestations and by June 2000 it appeared largely to exist only as fringing vegetation in bays and inlets.  相似文献   

20.
ABSTRACT

The impact of the planthopper Megamelus scutellaris, a biocontrol agent of water hyacinth in South Africa, was assessed using chlorophyll fluorometry in a greenhouse study under two different eutrophic nutrient treatments and agent densities (high and low). The results indicated that plants grown in low nutrients with high densities of M. scutellaris showed the greatest reduction in the fluorescence parameters Fv/Fm and PIabs. The successful use of chlorophyll fluorometry for the detection of subtle insect damage to water hyacinth leaves could have future application in post-release studies to measure the impact of M. scutellaris in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号