首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present data from a long time-series study to describe the factors that control phytoplankton population densities and biomass in the coastal waters of Oman. Surface temperature, salinity, nutrients, dissolved oxygen, chlorophyll a (Chl a), and phytoplankton and zooplankton abundance of sea water were measured as far as possible from February 2004 through February 2006, at two stations along the southern coast of the Gulf of Oman. The highest concentrations of Chl a (3 mg m−3) were recorded during the southwest monsoon (SWM) when upwelling is active along the coast of Oman. However, results from our study reveal that the timing and the amplitude of the seasonal peak of Chl a exhibited interannual variability, which might be attributed to interannual differences in the seasonal cycles of nutrients caused either by coastal upwelling or by cyclonic eddy activity. Monthly variability of SST and concentrations of dissolved nitrate, nitrite, phosphate, and silicate together explained about 90% of the seasonal changes of Chl a in the coastal ecosystem of the Gulf of Oman. Phytoplankton communities of the coastal waters of Oman were dominated by diatoms for most part of the year, but for a short period in summer, dinoflagellates were dominant.  相似文献   

2.
Summary The measurement of Chl a, Chl b and Chl c contents in four size fractions (Nuclepore filters of 10 m, 3m, 1 m and 0.2 m pore-size) together with microscopic examination illustrate the structure and the relative importance of the micro-, nano and pico-phytoplankton in the production system in the Weddell/Scotia Confluence area. In the Scotia Sea, large diatoms were prevalent and their biomass increased during the six week cruise period, exceeding 1 mg Chl a m–3 at the beginning of January. In contrast, in the Marginal Ice Zone of the Weddell Sea, the biomass remained low, up to 0.3 mg Chl a m–3. A diversified nanoplankton community accounted for more than 90% of this biomass: small diatoms, naked dinoflagellates, cryptophyceans, prymnesiophytes and green flagellates which increased the Chl b/Chl a ratio to values >0.20. An important trend affected the Confluence area, where a high biomass net-plankton community (4 mg Chl a m–3) rapidly changed towards a uniform nanoplankton system of the same kind as in the Weddell Sea. At times, autotrophic cryptophyceans were almost dominating (>4.106 cells/l), with a biomass up to 2 mg Chl a m–3 and a low phaeopytin ratio (<10%). This situation probably arises because of a grazing pressure by krill. However, due to the geographic and oceanographic peculiarities of this area, it is not possible to extrapolate these observations concerning the size structure of the primary producers to the Southern Ocean in general.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

3.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

4.
A study on spatio-temporal distribution of microphytobhethos in intertidal zones of Tagus Estuary was carried out from 1990 to 1992. Near Lisbon, Portugal, Tagus Estuary is a shallow mesotidal estuary, covering an area of 320 km2. The intertidal area ranges from 20 to 40% off the total area and it is constituted mainly by mudflats. Intertidal flats are richly populated by microalgae, diatoms being the most important and ubiquitos group.Spatial variation of microphytobethos was studied in spring 1990, 21 different sites were sampled. Microphytobenthos biomass was evaluated as chlorophyll a content of the surface centimeter, ranging from 10 to 240 mg m–2. A Principal Component Analysis showed that 62% of the total variability found in intertidal flats of Tagus estuary could be attributed to two major factors: sediment type and tidal height. A hierarchical grouping defined 3 major groups of similar stations, each one representing a different strata of the ecosystem.One station from each group was chosen for the study of the temporal variation. A sampling, rogram took place from April 1991 to April 1992, with fortnightly sampling, the Chl a ranged from 20–300 mg m–2. No clear seasonal variation was found, and our results indicated that tidal height of sampledsite played an essential role in temporal biomass evolution, thus upper littoral sites were influenced by climatic parameters, whereas in lower sites action of tides mainly controlled microphytic biomass.
Résumé Une étude sur l'hétérogénéité spatio-temporelle du microphytobenthos dans les sédiments intertidaux de l'Estuaire du Tage a été accompli de 1990 á 1992.L'Estuaire du Tage, prés de Lisbonne (Portugal) est un estuaire peu profond, mesotidal, avec une aire total de 320 km2. L'aire intertidale est comprise entre 20 et 40% du total, et constituéé surtout par des vasiéres. Ces slikkes sont peuplées par une communauté assez riche de microalgues, ou les diatomées sont les plus abundantes.La variation spatialle du microphytobenthos était évalué au Printemps 1990, ou 21 différentes stations étaient échantillonnées. La biomasse était évalué par la concentration enchlorophylle a du premier centimétre de sédiment, qui a varié de 10 á 240 mg Chl a m–2. Une Analyse en Composants Principales a montré que 62% de la variabilité de la biomasse était lié á deux facteurs: le sédiment et l'hauteur vis-á-vis la marée. Une classification hiérarchique des stations par similitude a établi 3 groupes principaux, représantantles différents strates de écecosytéme.Une station de chaque groupement a été choisie pour l'étude de la variation temporelle, qui s'est deroulé d'avril 1991 á avril 1992, avec des prélévements deux fois par mois. Les valeurs de Chl a obtenus vont de 20 á 300 mg m–2. Les variations saisonniéres observées ne sont pas claires: nos résultats indiquent que l'hauteur de la station (m) joue un rôle essentiel dans l'évolution temporel de la biomasse, c'est á dire, la biomasse microalgal des sites du supra-littoral est influencié par les paramétres climatiques, tandis que dans l'infra-littoral c'est l'action des marées le facteur principal.
  相似文献   

5.
Freshwater microalgal biofouling in hydropower canals in Tarraleah, Tasmania, is dominated by a single diatom species, Gomphonema tarraleahae. The microfouling community is under investigation with the aim of reducing its impact on electricity generation. Species succession was investigated using removable glass slides. Fouled slides were examined microscopically and for chlorophyll a biomass. Chl a biomass increased steeply after 8 weeks (0.09–0.87 mg m?2), but increased much earlier on slides surrounded by a biofouled inoculum. Succession began with low profile diatoms such as Tabellaria flocculosa, progressing to stalked diatoms such as Gomphonema spp. and Cymbella aspera. Few chlorophytes and no filamentous algae were present. Pulse amplitude modulated fluorometry was used to measure the physiological health of fouling on the canal wall. Maximum quantum yield (F v/F m) measurements were consistently <0.18, indicating that the fouling mat consisted of dead or dying algae. The succession and physiological health of cells in the fouling community has broad implications for mitigation techniques used.  相似文献   

6.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

7.
Y. Z. Yacobi 《Freshwater Biology》2003,48(10):1850-1858
1. Pigment composition was measured in natural phytoplankton samples from Lake Kinneret, Israel. From March through June 1998, the dinoflagellate Peridinium gatunense Nygaard mostly contributed more than 95% of the algal biomass. Peak densities were found in April, close to the water surface, with >109 cells m?3, chlorophyll (Chl) a concentration of 380 mg m?3 and areal Chl‐a density of >1300 mg m?2. 2. Cellular concentrations of Chl‐a changed between 201 and 282 pg cell?1, but did not show a defined temporal fluctuation. 3. The mass ratio of Chl‐c to Chl‐a changed from March to June between 0.16 and 0.22, and the peridinin to Chl‐a ratio changed from 0.25 to 0.41. Neither ratio showed a clear pattern of seasonal change. Conversely, there was a progressive increase in diadinoxanthin and β‐carotene ratios to Chl‐a through the season, parallel to the increase in photon flux impinging upon the lake surface. The diadinoxanthin to Chl‐a ratio changed from 0.11 to 0.28 and the β‐carotene to Chl‐a ratio varied from 0.03 to 0.08 from March through June. 4. Diatoxanthin was not detected in natural samples. However, it was present in experiments with P. gatunense cultures, when concentration of diatoxanthin increased rapidly, concurrent with a decrease in diadinoxanthin and β‐carotene concentrations, while Chl‐c and peridinin ratios to Chl‐a were almost stable with photon flux increase. 5. The seasonal variation in cellular pigmentation of P. gatunense in Lake Kinneret suggests that accumulation of photoprotective pigments is essential for optimisation of photosynthetic activity of this large dinoflagellate.  相似文献   

8.
Primary production of the microphytobenthic community and carbohydrates concentrations were studied in the lagoonal system of Grado and Marano, located in the Northern Adriatic coast. Sediment samples were collected along a salinity gradient. Abundance and species composition of the microphytobenthic communities were analysed and the benthic microalgal biomass was estimated as Chlorophyll a (Chl a). Primary production of benthic diatoms was estimated using 14C-tracer. Extracellular carbohydrates were extracted from the sediment and separated in two operationally defined fractions (colloidal and EDTA-extractable). Salinity was higher in the Grado lagoon, where the benthic microalgal community was mainly composed of marine diatoms. In the Marano lagoon, which has a lower salinity, freshwater species were also found. In both lagoons, photosynthetic efficiency showed an inverse relationship with salinity and a direct relationship with the main biological variables. Photosynthetic activity was directly related to Chl a and abundance of benthic microalgae, suggesting that in the benthic system microalgal community is responsible for primary production. Overall, salinity was also influent on the microphytobenthic primary production, which was greater in the more saline Grado lagoon.  相似文献   

9.
Microphytobenthos are the major intertidal primary producers in many estuarine systems and assessment of their biomass is essential in ecological studies. Algal biomass can be assessed by the use of proxy measurements, e.g. chlorophyll a (Chl a), using a lengthy and destructive extraction procedure. Fluorescence is a non-destructive and in situ alternative, recently applied to microphytobenthos, using the minimum Fluorescence signal (Fo) as a measurement of Chl a. In this study, Fo after 15 min of dark adaptation (Fo 15) showed a significant positive correlation with Chl a (r?=?0.84, p?n?=?24). The relationship between Fo 15 and Chl a extracted from sediment samples of increasing sample depth (0.2?2?mm) became less significant as sediment depth increased. The strongest relationship between Fo 15 and Chl a, expressed as concentration (mg?m?2) and content (mg?kg?1), was found when all data were combined, but nearly comparable levels of association were found for in situ measurements using sediment cores up to 2.0?mm deep. Results suggested that full dark adaptation was not always achieved because a significant negative correlation was observed between Fv/Fm and ambient irradiance for seasonal data. In addition, Fo 15 showed a more significant correlation with Chl a than with Fm 15, suggesting some residual level of non-photochemical quenching after 15 min in the dark. Despite the incomplete dark adaptation, the highly significant relationships between Fo 15 and both Chl a concentration and content suggest that the use of Fo 15 is a suitable in situ proxy method of estimating algal biomass.  相似文献   

10.
Periphyton (epilithon) gross primary production (GPP) was estimated using the DCMU-fluorescence method in the Yenisei River. In the unshaded littoral zone, chlorophyll a concentration (Chl a) and GPP value varied from 0.83 to 973.74 mg m−2and 2–304,425 O2 m−2 day−1 (0.64–95 133 mg C m−2 day−1), respectively. Positive significant correlation (r = 0.8) between daily GPP and periphyton Chl a was found. Average ratio GPP:Chl a for periphyton was 36.36 mg C mg Chl a m−2 day−1. The obtained GPP values for the Yenisei River have a high significant correlation with values predicted by a conventional empirical model for stream periphyton. We concluded that the DCMU-fluorescence method can be successfully used for measuring of gross primary production of stream phytoperiphyton at least as another useful tool for such studies.  相似文献   

11.
The relationship between the distribution of the whale shark Rhincodon typus and hydrobiological variables in the Caribbean Sea during 2005–2009 was analysed. Monthly trips were made to the R. typus aggregation area during the months when this species is present in the region (May to September) to record sightings and hydrological data and to collect samples to determine nutrients, chlorophyll a (Chl a) and zooplankton biomass. A total of 2104 R. typus were counted and three zones of high abundance were identified: Cabo‐Catoche, Contoy (both within the Whale Shark Biosphere Reserve, WSBR) and the zone knows as Afuera. The zones of greatest R. typus density within the WSBR were characterized by high Chl a concentrations (median: 1·1 mg m?3, interpercentile range: 0·5–1·8 mg m?3) and high nutrient concentrations, such as ammonium (median: 2·5 µmol l?1, interpercentile range: 0·5–6·4 µmol l?1), due to the influence of local upwelling. A generalized additive model (GAM) was used to explore the relationship between R. typus distribution and the environmental variables inside WSBR. Zooplankton biomass was the most influential environmental variable, supporting the close relationship between R. typus distribution and biological productivity. Copepods were the dominant zooplankton group within the WSBR. In the Afuera zone, there were large R. typus aggregations (>80 individuals) associated with zooplankton dominated by fish eggs and significantly higher mean ± s.d. biomass (3356·1 ± 1960·8 mg m?3) compared with that recorded inside the WSBR (103·5 ± 57·2 mg m?3). The differences among zones generated changes in R. typus distribution patterns and provided opportunities to develop local management strategies for this species.  相似文献   

12.
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10–60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10–20 m depth (136.2 ± 112.5 mg Chl a m−2, 261.7 ± 455.9 mg Phaeo m−2), intermediate at 20–30 m (55.6 ± 39.5 mg Chl a m−2, 108.8 ± 73.0 mg Phaeo m−2) and lower ones at 40–60 m (22.7 ± 23.7 mg Chl a m−2, 58.3 ± 38.9 mg Phaeo m−2). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 ± 3.2 (10–20 m) to 0.7 ± 1.0 (40–60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.  相似文献   

13.
We studied the abundance, biomass and potential ingestion rates of meiofauna in multi-year sea ice (MYI) of the Beaufort Gyre during two icebreaker expeditions in summers 2002 and 2003. Ice cores were taken at a total of ten stations and analyzed for ice temperature, salinity, chlorophyll a (Chl a), and ice meiofauna abundances. In 2002, ice was free of snow and covered with melt ponds. In 2003, snow still covered the ice and a slush-layer was found in the ice-water interface. The vertical distribution of Chl a mostly followed C-shaped curves with elevated concentrations at the bottom and top of the ice. Ice meiofauna was mainly restricted to the bottom 10 cm of the ice and was dominated by turbellarians, harpacticoid copepods and nematodes. The meiofauna abundances (range: 8–3,000 individuals m–2) and Chl a concentration (range: 0.1–1.7 mg Chl a m–2) were similar to estimates for MYI of the Transpolar Drift, but about 2 orders of magnitude below coastal fast first-year ice estimates. Calculated potential meiofaunal ingestion rate, based on allometric equations and volume estimates from the literature, was about 1% of published daily algal production rates and was thus unlikely to constrain algal biomass accumulation.  相似文献   

14.
1. Oligotrophic Lake Waikaremoana, New Zealand, is used for hydroelectric power generation and the lake levels are manipulated within an operating range of 3 m. There was concern that rapidly changing water levels adversely affected the littoral zone by decreasing light availability in two ways: local turbidity caused by shoreline erosion at low water levels; and decreased light penetration to the deep littoral zone caused by high water levels in summer. 2. The littoral zone was dominated by native aquatic plants with vascular species to 6 m and a characean meadow below this to 16 m. The biomass and heights of the communities in the depth zone 0–6 m were reduced at a site exposed to wave action relative to those at a sheltered site. However, the community structure below 6 m was similar at exposed and sheltered sites. The lower boundary of the littoral zone was sharply delimited at 16 m and this bottom boundary remained constant throughout the year despite large seasonal changes in solar radiation and the 3 m variation in lake level. 3. There was evidence that the deep-water community consisting of Chara corallina had adapted physiologically to low-light conditions. Net light saturated photosynthesis (CO2 exchange) per unit chlorophyll a (Chl a) was reduced to 1.7 μg C (μg Chl a)?1 h?1 at the lower boundary, half of that recorded at 5 m. The concentration of Chi a per gram of biomass (dry weight), was considerably greater at the lower boundary than higher in the profile [c. 7 mg Chl a (g dry wt)?1 at 16 m vs. 4 mg Chl a (g dry wt)?1 at 5 m]. Chl b also increased with depth and there was no change in the ratio of Chl a and Chl b with increasing depth. The saturation light intensity (Ik) of the community at the lower boundary was only 78 μmol photons m?2 s?1. Photosynthetic parameters (Ik and α) as well as the Chl a content remained relatively constant throughout the seasonal and short-term changes in radiation. 4. The photosynthetic characteristics of the littoral community were therefore not greatly affected by the lake level change caused by the present hydroelectric operations. However, the sharpness of the lower boundary and its extreme shade characteristics imply that the deep-water community would be sensitive to any further changes in underwater light availability.  相似文献   

15.
Spatial variability of the central Gulf of California (CGC) phytoplankton biomass and photosynthetic parameters in relation to physical forcing was studied. Sampling was carried out in November, and the surface TC range was 20-27.5°C. Strong tidal mixing in the midrift islands regions injects relatively cool, nutrient-rich waters to the euphotic zone. Some of this water is transported via jets and cool filaments throughout the Gulf. In general, chlorophyll a (Chl) of small phytoplankton (<8 m) (up to >2.5 mg m-3) was higher than that of large phytoplankton. Highest values of phytoplankton assimilation numbers (PBm) [3.17 mg C (mg Chla)-1 h-1], and photosynthetic efficiency B) [0.23 mg C (mg Chl a)-1 h-1 (W m-2)-1] were determined for the large phytoplankton cells (>8 m). Our hypothesis that PBm values increase from cooler to warmer waters is not supported by the data. We found a 27-fold spatial difference of Chl, compared with a 10-fold difference of PBm and a 6-fold difference of B. Thus, in our study area, the major source of variability for primary productivity (PP) comes from Chl, and not from PBm and B. Therefore, we propose that it is possible to estimate late-fall PP for the CGC using average photosynthetic parameters. Average values for PBm and B of total phytoplankton were 0.72 mg c (mg Chl a)-1 h-1 and 0.12 mg C (mg Chl a-1 h-1, (W m-2)-1, with standard errors of 0.07 and 0.03, respectively.   相似文献   

16.
The decrease of biodiversity related to the phenomena of global climate change is stimulating the scientific community towards a better understanding of the relationships between biodiversity and ecosystem functioning. In ecosystems where marked biodiversity changes occur at seasonal time scales, it is easier to relate them with ecosystem functioning. The objective of this work is to analyse the relationship between phytoplankton diversity and primary production in St. André coastal lagoon – SW Portugal. This lagoon is artificially opened to the sea every year in early spring, exhibiting a shift from a marine dominated to a low salinity ecosystem in winter. Data on salinity, temperature, nutrients, phytoplankton species composition, chlorophyll a (Chl a) concentration and primary production were analysed over a year. Modelling studies based on production-irradiance curves were also conducted. A total of 19 taxa were identified among diatoms, dinoflagellates and euglenophyceans, the less abundant group. Lowest diversities (Shannon–Wiener index) were observed just before the opening to the sea. Results show a negative correlation (p<0.05) between diversity and chlorophyll a (Chl a) concentration (0.2–40.3 mg Chl a m−3). Higher Chl a values corresponded to periods when the community was dominated by the dinoflagellate Prorocentrum minimum (>90% of cell abundance) and production was maximal (up to 234.8 mg C m−3 h−1). Maximal photosynthetic rates (Pmax) (2.0–22.5 mg C mg Chl a−1 h−1) were higher under lower Chl a concentrations. The results of this work suggest that decreases in diversity are associated with increases in biomass and production, whereas increases correspond to opposite trends. It is suggested that these trends, contrary to those observed in terrestrial and in some benthic ecosystems, may be a result of low habitat diversity in the water column and resulting competitive pressure. The occurrence of the highest photosynthetic rates when Chl a is low, under some of the highest diversities, suggests a more efficient use of irradiance under low biomass–high diversity conditions. Results suggest that this increased efficiency is not explained by potential reductions in nutrient limitation and intraspecific competition under lower biomasses and may be a result of niche complementarity.  相似文献   

17.
Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100–595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March–June 2008) to open-water conditions in summer (June–August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 μm) varied significantly among sites (1.2–6.4 g C m−2 in spring, 1.1–12.6 g C m−2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9–33.2 mg C m−2 day−1 in spring, 11.6–44.4 mg C m−2 day−1 in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.  相似文献   

18.
烟台四十里湾浮游动物群落特征及与环境因子的关系   总被引:3,自引:0,他引:3  
2009年3月—2010年12月在烟台四十里湾海域对浮游动物群落结构及其环境因子进行了连续20个航次的综合调查,记录到浮游动物8大类共计64种(类)。浮游动物主要类群为桡足类和浮游幼虫,分别发现22种、18类,占总种(类)数34%、28%;其次为水螅水母类,发现13种,占20%;毛颚动物和栉水母类各发现1种。浮游动物的优势种为中华哲水蚤(Y=0.183)、腹针胸刺水蚤(Y=0.078)、强壮箭虫(Y=0.078)和洪氏纺锤水蚤(Y=0.026)。浮游动物的生态类型主要为温带近岸种和广布性种。四十里湾海域浮游动物群落结构的季节变化较为明显,春、夏、秋、冬四季之间群落结构有显著性差异(P0.05),同一季节内群落结构相似度较高,达55%以上。浮游动物丰度中位值在5月份达到最高(546.3个/m~3);种类数、多样性指数中位值均在8月达到最高,分别为18种、3.20;浮游动物生物量呈现出双峰变化模型,5月份达到第1峰值(中位值870.4 mg/m~3),10月份为第2峰值(中位值362.0 mg/m~3)。浮游动物种类数高值区主要分布在养马岛北部海域,而丰度高值区主要分布在近岸尤其是辛安河口海域。浮游动物种类数及多样性指数与水温、化学需氧量、硅酸盐显著正相关(P0.01),与盐度、溶解氧、无机氮显著负相关(P0.01);水温和盐度是影响浮游动物分布的主要环境因子,其次是硅酸盐、叶绿素a和化学需氧量,活性磷酸盐、溶解氧、透明度以及无机氮对浮游动物分布的影响较小。  相似文献   

19.
The abundances and chlorophyll aconcentrations (Chl a) of ultraphytoplankton (<5 m) were determined at four ice-covered sites in northern seas, i.e. southeastern Hudson Bay, Saroma-ko Lagoon, Resolute Passage and the Northeast Water Polynya. Numbers of total ultraphytoplankton were low, ranging from 3.6 x 107 to 9.7 x 109 cells m-3, which confirms the overall paucity of ultra-phytoplankton in cold waters. Concentrations of <5 m Chl a varied between 0.002 and 10.8 mg m-3, which accounted for 0.2-99.7% of total Chla. Chlorophyll a concentrations of ultraphytoplankton can thus reach high values and make up a substantial fraction of total Chl a. Ultraphytoplankton were ubiquitous, but they showed high among- and within-site variability in abundance, biomass and contribution to total Chla concentrations. The ultraphytoplankton comprised primarily eukaryotes and prokaryotic phycoerythrin-rich cyanobacteria, but also some cryptomonads and phycocyanin-rich cyanobacteria. Concentrations of ultraplanktonic eukaryotes reached 7.8 x 109 cells m-3, but were generally <5 x 109 cells m-3, whereas the maximum concentration of prokaryotes was 6.2 x 109 cells m-3. The concentrations of eukaryotes and prokaryotes were related, overall, to water mass characteristics, i.e. temperature, salinity, percent irradiance, and concentrations of nitrate and ammonium. Depending on sites, the abundances of eukaryotes were positively liked to salinity, percent irradiance, nitrate and ammonium, whereas the abundances of prokaryotes were positively correlated with ammonium and nitrate. Phycocyanin-rich cyanobacteria were generally confined to brackish waters (Hudson Bay). The highest cell numbers of ultraphytoplankton were found at temperatures of <0.5C and salinities of >30 p.s.u.   相似文献   

20.
Microphytobenthos production in the Gulf of Fos, French Mediterranean coast   总被引:1,自引:1,他引:0  
Microphytobenthic oxygen production was studied in the Gulf of Fos (French Mediterranean coast) during 1991/1992 using transparent and dark benthic chambers. Nine stations were chosen in depths ranging from 0.5 to 13 m, which represents more than 60% of bottoms in the Gulf. Positive net microphytobenthic oxygen production was seasonally detected down to 13 m; the maximum value attained was 60 mg O2 m−2 h−1 (0.7–0.8 g O2 m−2 d−1) in sediments at 0.5 m depth during spring and winter. Respiration rates were maximum in the sediments located at the mussel farm (5 m), in the center of the Gulf, with 135 mg O2 m−2 h−1 in spring (3.2 g O2 m−2 d−1); in the other locations, it ranged from 3.3 to 58.2 mg O2 m−2 h−1 (0.08–1.4 g O2 m−2 d−1). Compared to phytoplankton, microphytobenthos production was higher only in the bottoms < 1 m depth. In deeper bottom waters, phytoplankton production could be absent due to light limitation, while microphytobenthos was still productive. Phytoplankton production m−2 was generally higher than microphytobenthic production. Microphytobenthic biomass, higher than phytoplanktonic, varied from 27 to 379 mg Chl a m−2, the maximum in the mussel farm sediments, with the minimum in sandy shallow bottoms. Pigment analysis showed that microphytobenthos consisted mainly of diatoms (Chl c and fucoxanthin) but other algal groups containing Chl b could become seasonally important. A Principal Component Analysis suggested that the main statistical factors explaining the distribution of our observations may be interpreted in terms of enrichment in phaeopigments and light; the role of Chl a appearing paradoxically as secondary in benthic production rates. Phaeopigments are mainly constituted by phaeophorbides, which indicate grazing processes. The influence of the mussel farm on the oxygen balance is noticeable in the whole Gulf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号