首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cam River mouth (Haiphong Province) is one of the main river mouths of the Red River System, which is one of the most important water resources in Northern Vietnam. Over the past 50 years, the strong socio-economic development in the area has caused a considerable contamination with heavy metals (Co, Cr, Cu, Mn, Ni, Pb, and Zn) and arsenic. In this study, the vertical and horizontal distributions of heavy metals and arsenic in sediments from the Cam River mouth were investigated. In addition, the history, origin, and degree of contamination were assessed. Normalized (with respect to Al) heavy metal and arsenic concentrations in sediment cores and absolute dates obtained from the 137Cs analysis were used to reconstruct the pollution history of the river mouth. As, Cu, Mn, Pb, and Zn concentrations increase rapidly by approximately two times or more from 1954 to 1975, and then remain nearly unchanged from 1975 until 2008, whereas Co, Cr, and Ni concentrations slightly increase from 1954 until 2008. In addition, background values for heavy metals and arsenic have also been determined with regard to the period before 1954. In the study area, Co, Cr, Cu, Ni, Mn, and Zn are evaluated as minorly enriched, whereas As and Pb are classified as moderately enriched. Generally, the anthropogenic activities in the Haiphong harbor and industrial zone locally contribute to the contamination by heavy metals and arsenic in the Cam River mouth.  相似文献   

2.
黄河口盐地碱蓬湿地土壤-植物系统重金属污染评价   总被引:6,自引:0,他引:6  
王耀平  白军红  肖蓉  高海峰  黄来斌  黄辰 《生态学报》2013,33(10):3083-3091
以黄河口盐地碱蓬湿地为例,评价了淹水和非淹水区湿地表层土壤As、Cd、Cu、Cr、Pb和Zn 6种重金属的污染程度及其在土壤-植物系统中的迁移、富集特征,分析了不同积水深度和土壤理化性质对研究区土壤重金属含量的影响.研究结果表明,与土壤或沉积物质量标准相比,黄河口盐地碱蓬湿地土壤受As和Cd污染最严重,而其它重金属污染较轻;非淹水土壤Cd、Cr和Zn含量高于淹水湿地,而As、Cu和Pb则较低;而且淹水土壤As含量随积水深度增加而呈下降趋势,但积水深度对其他重金属含量的影响不明显.相关性分析结果表明,按照受土壤关键影响因子的不同重金属(除As外)可以分为两类:第一类为Cd、Cr和Zn,这些重金属含量受土壤pH值和盐分影响较大,且相互间存在显著正相关关系,表明它们可能有相同的来源;第二类为Pb和Cu,它们受土壤pH值、盐分和有机质的影响,且Pb和Cu之间存在显著正相关关系.除Cr、Cu和Zn外,重金属在盐地碱蓬的根系内一般不发生显著富集,但绝大多数重金属都表现出地上部分的含量比根系更高的现象.  相似文献   

3.
The purpose of this study was to investigate the total and available concentrations of Pb, Cr, Cu, Ni, and Zn in the vegetable soils from the outskirts of a heavy industry city, Northeast China, and to assess the sources of heavy metals and their availability. The average concentrations of Pb, Cu, and Zn were significantly higher than their background values of Changchun topsoil. Principal component analysis, cluster analysis, and geostatistical analysis results suggested that Pb, Cu, and Zn were consistently from anthropogenic sources, while Cr and Ni were from natural sources with low concentrations. Kriging results showed that several hotspots of high metal concentration were identified by the geochemical maps and caused by different environmental factors. Although the available (ethylene-diamine-tetraacetic acid-extractable) fractions showed much lower values than total concentrations of metals, Pb and Cu had relatively high ARa (average availability ratio of metals) values. Our findings show that most of the studied metals had accumulated to some extent in vegetable soils and several hotspots of high metal concentration appeared at the peri-urban of Changchun. The concentrations of some metals in peri-urban vegetable soils have been largely affected by anthropogenic activities. Appropriate measures should be taken to effectively control heavy metal levels in vegetable soils and thus protect human health.  相似文献   

4.
The relationships between metal contents in soil, road dust, and rice, and in human hair from a rural area of China were observed for Cr, Cu, Mn, Ni, Pb, and Zn. The results showed that the mean concentrations of Mn in human hair were higher than the highest reference value. The concentrations of Cr, Cu, Ni, and Zn in soil and road dust were usually higher than their background values. The enrichment factors indicated that the determined metals in soil and road dust were usually derived from natural sources. Chromium, Pb, and Zn in soils and road dusts from several sites were slightly influenced by anthropogenic sources. The regression analyses showed that positive relationships usually exist between the concentrations of the determined metals in rice and in human hair as well as in soil and in human hair. However, relationships between metal concentrations in road dust and in human hair were less obvious. The study demonstrated that human hair was an applicable biomonitor of metal concentrations in rice, soil, and road dust from a rural area in China. Metal concentrations in local human hair could be used to predict contamination levels of metals in rice and soil.  相似文献   

5.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

6.
The distribution of Cd, Pb, Ni, Cr, Cu, Mn, Fe, and Zn in sediment and surface water, and some physico-chemical characteristics of Orogodo river sediments, were evaluated. The sediment pH ranged from 5.1–7.3; conductivity values ranged from 34.5 to 389.0 μScm?1. Total nitrogen values ranged from 0.06–0.10%, NH3-N values ranged from 0.25–0.44 mgkg?1, percent total organic carbon ranged from 0.21–1.68%, and total phosphorus values ranged from 0.004–0.02% for dry and wet seasons. The sand fraction consists of 87–95%, silt fractions ranged from 0–2%, and clay fraction between 4–13%. The mean concentrations of metals (dry weight basis) in the streambed sediments ranged from 1.92–17.37 mgkg?1 for Cu, 0.98–4.78 mgkg?1 for Ni, 0.01–32.98 mgkg?1 for Mn, 353.22–2045.64 mgkg?1 for Fe, 69.96–100.16 mgkg?1 for Zn, 0.21–1.32 mgkg?1 for Cr, and Cd was less than 0.001 mgkg?1 for wet and dry seasons. The mean concentrations of metals in the surface water ranged between 0.01–0.05–0.05 mg/L for Cu, nd-0.11 mg/L for Ni, 0.001–0.31 mg/L for Pb, 0.001–1.82 mg/L Mn, 0.01–3.52 mg/L for Fe, 0.16–0.61 mg/L for Zn, nd-0.007 mg/L for Cr, and <0.001 mg/L for Cd. Based on principal component analysis, two main sources of metals in the Orogodo River can be identified: (i) Cr, Cu, Pb, and Fe are mainly derived from industrial sources; (ii) Mn, Zn, and Ni associated with traffic activities. No element examined had a contamination/pollution index value greater than unity (pollution ranges). This implies that the multiple pollution indices obtained from the analysis showed that Orogodo River sediments were not polluted with heavy metals.  相似文献   

7.
Although catchments have been implicated as an important source of metals to lakes, the catchment contribution of different metals is poorly known, and the anthropogenic contribution is not known at all. We determine the anthropogenic lake sediment burdens of Zn, Cu, Ni, Cr, and Pb for several Quebec and Ontario lakes, not subject to point source loading, to obtain estimates of atmospheric loading and inputs from terrestrial sources. To do this, we first collected multiple cores across 11 lake basins to estimate the whole-lake Pb burdens. As the whole-lake Pb burdens did not differ among lakes that spanned over two orders of magnitude in drainage ratios (drainage basin area/lake area), we conclude that catchment retention of anthropogenic Pb is complete. The anthropogenic Pb burdens were then used as a correction for focusing for the other metals. Among the metals, Cr and Ni were the most readily exported from drainage basins, followed by Cu. Zn showed no increase with drainage ratio, indicating Zn to be effectively retained by catchments. The export coefficients of the Pb corrected metals correlate well with ocean residence time, revealing a similar metal sorption/precipitation sequence in both soils and oceans. Sediment metal burdens provide a relatively easy way to obtain not only metal export coefficients from drainage basins, but also the atmospheric deposition of anthropogenic metals (e.g. Pb: S.E. Quebec, 950 mg*m–2: Laurentians, north of Montreal, 420 mg*m–2). The export coefficients are not only simpler to obtain than by mass balance measurements, but, in addition, identify the anthropogenic component.  相似文献   

8.
The concentrations of 10 metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Se, Zn) were determined in drinking water in Khingan, China, a forest zone after long-term excessive deforestation. These metals’ concentrations in water exceeded background values of metals in some other regions of the world, indicating that there were other metal sources contributing to such high levels of metals in Khingan. Arsenic was the only metal whose concentration exceeded the maximum levels allowed in drinking water. Principal component analysis showed that As, Cd, Cu, and Se originated from anthropogenic sources and exhibited significantly high concentrations in north Khingan, while Fe and Mn derived from natural formation and showed significantly high concentrations in central Khingan. Health risks from metals were evaluated by a model recommended by the U.S. Environmental Protection Agency. Ingestion was the predominant pathway of exposure to metals in water for local residents. Arsenic was also the only metal causing both noncarcinogenic hazard and carcinogenic risk in Khingan. The high risks occurred mainly in north Khingan and are associated with coal combustion. This study indicates that long-term excessive deforestation may increase As concentration considerably in drinking water and then pose health risks to local residents.  相似文献   

9.
To investigate the impact of water impoundment on the metal contamination in sediments cores from the three tributaries of Three Gorges Reservoir (TGR), the concentrations, distribution, bioavailability, and potential risk of eight trace metals between summer and winter were analyzed using sequential analysis. The mean contents of all studied metals were higher than the geochemical background value, and were higher in summer than in winter. The results of the partitioning study indicated that Cr and Ni prevailed in the residual fraction, while a small proportion was found in the easily soluble fractions. Cu and Zn were distributed mainly in the residual and reducible fraction, while Cd and Pb were predominantly associated with non-residual fractions. These observations suggested that the most easily mobilized metals in the study area were Cd and Pb. The mean enrichment factors (EF) of Cu, Zn, Cd and Hg were higher than 1.5, revealing the potential anthropogenic inputs, whilst the EF of other metals remained within the range of natural variability. The positive correlation between non-residual Cu, Zn and Cd and their EF values further indicated that anthropogenic inputs were the potentially major contributor for the enrichment of Cu, Zn and Cd in TGR sediments. The results evaluated by both potential ecological risk index and modified risk assessment code (mRAC) of all sampling sites demonstrated the relatively high potential risk of sediment contamination effect in TGR.  相似文献   

10.
In this study, sediment samples were collected from Kabul River (Pakistan) and analyzed for heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). The physico-chemical characteristics were also determined which are known to influence the metal accumulation within the sediment matrix. Heavy metal concentrations (mg kg?1, dry weight basis) in the sediment were in the order of Zn > Cr > Ni > Pb > Cd. Heavy metal concentrations were found in moderately polluted category set by U. S. Environmental Protection Agency (USEPA). However, Cr and Ni concentrations exceeded the screening levels at the sites where a larger volume of industrial effluents enter into Kabul River. Higher concentrations of almost all the tested metals were detected at locations of greater industrial and sewage entry points. Sediment organic matter (OM) exhibited strong correlation with Pb (R2 = 0.80), Ni (R2 = 0.67) and Zn (R2 = 0.46), indicating that OM plays a significant role in metal retention and accumulation. The findings of this study showed that Kabul River is reasonably contaminated with selected heavy metals released from anthropogenic sources. In the study area, sewage discharge was the major source of heavy metals including Zn and Pb, which were observed at locations where sewage effluents enter into the river.  相似文献   

11.
Concentrations of trace metals (Cu, Pb, Zn, Cd, Cr, Hg, and As) were determined for the first time in seawater, sediment, and Manila clam from Deer Island, Liaoning Province, China. The seawater, sediment, and clam samples were collected seasonally at three clam farming sites around Deer Island during 2010–2011. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the seawater samples were 4.16, 0.72, 5.88, 0.45, 2.51, 0.03, and 1.02 μg/l, respectively. The seasonal variations of trace metals in seawater showed a significant difference in the concentrations of Cu, Pb, Zn, Hg, and As among seasons. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the sediment samples were 6.43, 13.80, 53.08, 1.10, 36.40, 0.05, and 4.78 mg/kg dry weight, respectively. Trace metal concentrations in sediment seasonally varied significantly except for Cd and Hg. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg, and As in the clam samples were 11.28, 0.61, 92.50, 0.58, 3.98, 0.03, and 1.98 mg/kg dry weight, respectively. Concentrations of Cu, Zn, Cd, Cr, and As in Manila clam showed marked seasonal fluctuations with significant difference. Cu and Zn were the metals with the highest mean biosediment accumulation factor values in Manila clam. Besides, significant correlations for the concentrations of Cu and Zn relative to their concentrations in sediment were also found. Such differences in regression analyzes may be explained by differential bioaccumulation of essential and xenobiotic metals. Concentrations of trace metals in Manila clam did not exceed the maximum established regulatory concentrations for human consumption. Moreover, the calculations revealed that the estimated daily intake values for the examined clam samples were below the internationally accepted dietary guidelines and the calculated hazard quotient values were well less than 1, thus strongly indicating that health risk associated with the intake studied metals through the consumption of Manila clam from Deer Island was absent.  相似文献   

12.
China's rapid industrialization and mining activities have led to rigorous deterioration in the quality of soil and water. This study aimed at evaluating the environmental impacts of industrial activities around the Jinxi River using geochemical and statistical methods. To attain this aim, water and sediment samples were collected from 14 sites along the Jinxi River and around Lake Qingshan, and analyzed for their concentrations of heavy metals using ICP-mass. The results show that the concentrations of studied heavy metals didn't exceed the maximum permissible limits (MPL) in water, except for Fe and Cu. For sediment analysis, according to sediment quality guidelines (SQGs), the studied sediment samples varied from non-polluted to heavy rate for Cr, Ni, Cu, As, Mn, Zn, and Fe and non-polluted for Cd and Pb. In addition, the sites adjacent to Lina’n City were significantly enriched with Cr, Cu, Cd, and Zn and extremely enriched with As and Se. Principal component analysis (PCA) and correlation analyses revealed that an anthropogenic source was the main source for heavy metals in the river system. We concluded that geochemical and statistical analyses can provide useful information for water quality assessment. Furthermore, the Chinese government should formulate strict laws to prevent the water streams from contamination.  相似文献   

13.
Sediments are the ultimate sump for heavy metal pollutants. The main purpose was to investigate the ecological and health risk assessment of heavy metals in the sediments of Wadi Al-Aqiq water reservoir. The metals detected were arranged in decreasing order Fe > Mn > Cr > Cu > Zn > Ni > Co > Pb. Pearson correlation analysis indicated strong positive association and significant linear relation between various pairs of metals. Different evaluation indices used indicated that source of contamination from lithogenic sources and sediments can be classified as low polluted quality. A comparison of the concentrations of metals with International Sediment Quality Guidelines criteria showed that only Cu and Ni concentrations above the ERL and below the ERM guideline values suggest possible adverse effects. On comparing with US Environmental Protection Agency prepared sediment quality criteria it indicated that Pb and Zn have concentrations below the non-polluted criteria, Fe, Mn, and Ni lies in the range of moderately polluted criteria, and Co and Cu are within the heavily polluted criteria. Non-carcinogenic risk quantification indicated health concern from ingestion route and no health effects for dermal exposure. On considering additive effect, the dermal exposure may cause health harm. The carcinogenic risk assessment for lead and chromium showed an acceptable risk to human health.  相似文献   

14.
ABSTRACT

Coimbatore is one of the industrial cities in Tamil Nadu, India, which has been experiencing rapid urbanization and population growth. Coimbatore is also known for its unique freshwater lakes environment and serves as a rich ecosystem. However, the assessment of heavy metal levels in aquatic environments is limited. This study was aimed to investigate physicochemical parameters, heavy metals level and sources, and ecotoxicity in sediments collected from five different lakes in Coimbatore. The concentrations of heavy metals (Cr, Cu, Zn, As, Cd, and Pb) in sediments were determined by Inductive Coupled Plasma-Mass Spectroscopy (ICP-MS). Hg level was measured using Advanced Mercury Analyzer (AMA). The determined heavy metal concentrations in sediments varied significantly according to the lake location and consistent with local human linked anthropogenic activities. The metal concentrations in urban lakes were exceeding both the Sediment Quality Guidelines (SQGs) and the probable effect levels” (PELs) mostly; e.g., in sediments from the Lake Ukkadam, the values of 5.08 and 203.32 mg kg-1 dry weight were observed for Hg and Cu, respectively. The ecotoxicity test with ostracods exposed to the sediment samples revealed that mortality ranged between 6 and 23% for countryside lakes and 28 and 88% for the lakes within urban Zone. We used Spearman rank-order correlation and Principal components analysis (PCA) to assess the sources of pollutants and if they related to anthropogenic pressure and eutrophication of lakes. The main sources of heavy metals from studied lakes differed significantly. Urban and industrial effluents were dominant sources in urban lakes. Agricultural runoff, domestic wastes, and natural weathering were responsible for the metal sources in country lakes. This study provides baseline information on the heavy metal pollution status of sediments in the freshwater lakes in Coimbatore, which will be useful for pollution control measures to prevent possible metal sources on these lakes and impose appropriate management practices and continuous monitoring by relevant authorities.  相似文献   

15.
Heavy metals (Pb, Cd, Ni, Cr, Cu, Zn, Mn, and As) concentration was investigated in the industrial effluents, water, sediment, and fish samples collected around the Dhaka Export Processing Zone, Savar, Bangladesh, to evaluate the level of contamination. The metals concentration in the industrial effluents of DEPZ and in the water samples of Dhalaibeel (lowland cum lake) and Bangshi River were significantly higher compared to the guideline values for industrial effluents and for drinking water (WHO and USEPA), respectively. The sedimentary metal concentrations were found to be lower than the respective probable effect concentrations (PECs) following the sediment quality guidelines. Furthermore, in comparison with the fish standards, the studied fish species were not found to be contaminated by heavy metals. Principal component analysis and cluster analysis demonstrated that the wastewater from the numerous industries and the domestic sewages around the DEPZ might have a possible impact on heavy metals contamination in the study area. The Pearson correlation analysis showed significant correlations (p < 0.01 and p < 0.05) between most of the metals in the samples of effluents, water, sediments, and fish muscles. The percentage enrichment factor (EF%) and geo-accumulation index () were followed to evaluate metal contamination in the sediment samples. Dhalaibeel sediment was maximally enriched for Cr (53.55%) and Bangshi River sediment for Zn (54.37%). The geo-accumulation index values for the sediment samples were less than zero, indicating that the sediment samples were free from contamination. This study could be used as a model study to assess the impact of anthropogenic activities on heavy metals contamination in aquatic ecosystems.  相似文献   

16.
The concentrations of metals (Mn, Pb, Fe, Zn, Cu, Cd,Co, Ni, Cr, Na, K, Ca, Mg) were determined in thegreen alga Ulva rigida, in the sediment andseawater of Thermaikos Gulf (Greece) during monthlysamplings in 1994–1995. This Gulf is the recipientof domestic and industrial effluents. Pb, Fe, Cu, Coand Cr concentrations in U. rigida at the studyarea were higher than those 13 years earlier andapparently came from different sources than those forZn, Cd and Ni. The relative abundance of metals inthe alga decreased in the order: Mg > Na > K >Ca > Pb > Fe > Mn > Zn > Cr, Cu > Ni >Co > Cd. Only Cu concentrations in the alga fromKalochori and Cd ones from Viamyl showed significantseasonal changes. Cu and Cd concentrations ingeneral followed the same pattern of variation, withminimum values in winter-spring. This pattern isdiscussed in relation to growth dynamics and tissueage. Only Pb concentrations in the alga showed asignificant positive correlation with concentrationsin the seawater. There were both positive andnegative correlations among some metals in the alga. It is concluded that U. rigida can be used as anindicator species, especially for Pb.  相似文献   

17.
以铜锈环棱螺(Bellamya aeruginosa)为测试生物,采用28 d沉积物生物积累试验研究铜锈环棱螺对污染河流沉积物中重金属的生物积累,并探讨其与重金属赋存形态的关系.结果表明:铜锈环棱螺肝胰脏对Cd、Pb、Cu、Cr、Zn和Mn均具有较强的积累作用.不同重金属的积累量存在较大差别,Zn的积累量最多,占重金属总积累量的84.32%±4.36%,其次为Cu,占7.67%±2.84%;Pb、Cr和Mn的比例相对较少,分别为3.62%±1.84%、2.22%±1.03%和1.33%±0.15%;Cd所占比例最少,为0.83%±0.53%.肝胰脏中重金属元素之间的相关性均不显著.肝胰脏金属污染指数与沉积物污染综合指数具有显著的正相关关系,铜锈环棱螺可以作为沉积物重金属污染的监测生物.不同沉积物Cd、Cr、Zn和Mn的生物-沉积物积累因子(BSAF)具有较大的差异,Cu和Pb的BSAF比较稳定.Cd的生物积累与沉积物中Cd的可交换的与酸可溶态及可氧化态显著相关;Pb的生物积累与Pb的可还原态显著相关;Cu的生物积累与Cu的可氧化态显著相关;Mn的生物积累与Mn的可交换的与酸可溶态和可还原态显著相关;Cr和Mn的生物积累与其不同形态和总量均不相关.BSAF不宜作为衡量铜锈环棱螺对沉积物中重金属生物积累能力的指标.  相似文献   

18.
There is currently a wide variety of methods used to evaluate soil contamination. We present a discussion of the advantages and limitations of different soil contamination assessment methods. In this study, we analyzed seven trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) that are indicators of soil contamination in Dexing, a city in China that is famous for its vast nonferrous mineral resources in China, using enrichment factor (EF), geoaccumulation index (Igeo), pollution index (PI), and principal component analysis (PCA). The three contamination indices and PCA were then mapped to understand the status and trends of soil contamination in this region. The entire study area is strongly enriched in Cd, Cu, Pb, and Zn, especially in areas near mine sites. As and Hg were also present in high concentrations in urban areas. Results indicated that Cr in this area originated from both anthropogenic and natural sources. PCA combined with Geographic Information System (GIS) was successfully used to discriminate between natural and anthropogenic trace metals.  相似文献   

19.
A total of 455 agricultural soil samples from four nonferrous mines/smelting sites in Shaoguan City, China, were investigated for concentrations of 10 heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn). The mean concentrations of the metals were 72.4, 5.16, 13.3, 54.8, 84.5, 1.52, 425, 28.2, 529, and 722 mg kg?1, respectively. The values for As, Cd, Hg, Pb, and Zn were more than 8 and 1.5 times higher than their background values in this region and the limit values of Grade II soil quality standard in China, respectively. Estimated ecological risks based on contamination factors and potential ecological risk factors were also high or very high for As, Cd, Hg, and Pb. Multivariate analysis (Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) strongly implied three distinct groups; i.e., As/Cu/Hg/Zn, Co/Cr/Mn/Ni, and Cd/Pb. Local anomalies for As, Cu, Hg, and Zn by a probably anthropogenic source (identified as mining activity), Co, Cr, Mn, and Ni by natural contribution, and a mixed source for Cd and Pb, were identified. This is one of the few studies with a focus on potential sources of heavy metals in agricultural topsoil around mining/smelting sites, providing evidence for establishing priorities in the reduction of ecological risks posed by heavy metals in Southern China and elsewhere.  相似文献   

20.
Thirty-seven surface sediment samples were taken in the Pontevedra Ria (NW Iberian Peninsula), and metal concentrations (Cd, Co, Cr, Cu, Fe, Ni, Pb, and Zn) and organic/inorganic parameters were determined in order to obtain a mapping of their distribution, background values and the status of contamination. Background values were obtained from Metal/Fe ratios obtained by regression lines using “clean” stations. Contamination was assessed by the use of normalized enrichment factors (NEF). The middle and outer parts of the ria, mostly influenced by oceanic water and scarce anthropogenic activities, showed a low/null contamination (NEF ~ 1) for all the metals studied. However, the inner part of the ria, where most of the anthropogenic (urban and industrial) activities are located, showed a significant enrichment for Zn, Cu, and Pb, with NEF up to 5.2, 18, and 3.4, respectively. The rest of the metals were not significantly affected. Due to the hydrographic characteristics of the rias coastal systems, contamination sources are generally located well inland but in the high salinity region. Therefore rapid flocculation and accumulation of metal contaminants in sediments is favored close to their emission sources. Cadmium also showed a significant enrichment, strongly influenced by the presence of organic-rich sediments rather than contamination from point-sources. In the estuarine part of the ria, a significant enrichment was found for Cd, Cu, and Zn. However, it is unclear whether this is due to contamination by these two metals in the area or simply due to a difference in the lithogenic composition of the riverine sediments compared to the ria sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号