首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sponges assemblages were sampled in four coastal study regions (Malindi, Kenya; Quirimba Archipelago, northern Mozambique; Inhaca Island, Southern Mozambique and Anakao, Madagascar) in the west Indian Ocean. Sponge species were counted in multiple 0.5 m2 quadrats at depths of between 0 and 20 m at a number of sites within localities within each region. Despite the relatively small areas sampled, sponge samples comprised a total of 130 species and 70 genera of the classes Demospongiae and Calcarea. Sponges are clearly a major taxon in these regions in terms of numbers of species, percentage cover or biomass, although their ecology in the west Indian Ocean is virtually unknown. Nearly half of the genera, e.g. Iotrochota, found were species with a so‐called Tethyan distribution. Most of the other genera were cosmopolitan, e.g. Clathria, but some were cold water (Coelosphaera), Indo‐Australian (Ianthella) or circum‐African (Crambe). Many of the species encountered in the present study occurred in at least two study regions, many in more and could occupy large areas of substratum. Some of these, e.g. Xestospongia exigua, are commonly found throughout the Indo‐west Pacific region where they also occupy much space. The endemicity of the shallow water sponge faunas in East Africa (20–25%) seem to be high within the Indo‐Pacific realm but are lower than northern Papua New Guinea. The tropical regions (Kenya and Northern Mozambique) were more speciose than subtropical regions (southern Mozambique and Madagascar) but not significantly more diverse (Shannon H′). Although latitude was not a major influence on sponge community patterns, hard substratum assemblages did form a cline from the tropics to Southern Mozambique, linked by Madagascar. Substratum nature (habitat) was most important in influencing the suite and number of species present. Sponge assemblages of soft substrata were much more dissimilar, both within and between habitats, than those on hard substrata. There was a predictable variability in species richness between hard substratum habitats: coral reefs being speciose and caves being less so. Our findings showed that both patterns and influences on species richness may be decoupled from those influencing diversity. In our data species richness, but not diversity, showed striking regional and bathymetric trends. In addition, sponge species richness mainly split at coral reef vs. non‐reef habitats, whilst diversity divided principally into assemblages on hard and soft substrata. We consider this dichotomy of findings between species richness and diversity values to be important, as these are two principal measures used for the interpretation of biodiversity.  相似文献   

2.
Marine heatwaves can lead to rapid changes in entire communities, including in the case of shallow coral reefs the potential overgrowth of algae. Here we tested experimentally the differential thermal tolerance between algae and coral species from the Red Sea through the measurement of thermal performance curves and the assessment of thermal limits. Differences across functional groups (algae vs. corals) were apparent for two key thermal performance metrics. First, two reef‐associated algae species (Halimeda tuna and Turbinaria ornata) had higher lethal thermal limits than two coral species (Pocillopora verrucosa and Stylophora pistillata) conferring those species of algae with a clear advantage during heatwaves by surpassing the thermal threshold of coral survival. Second, the coral species had generally greater deactivation energies for net and gross primary production rates compared to the algae species, indicating greater thermal sensitivity in corals once the optimum temperature is exceeded. Our field surveys in the Red Sea reefs before and after the marine heatwave of 2015 show a change in benthic cover mainly in the southern reefs, where there was a decrease in coral cover and a concomitant increase in algae abundance, mainly turf algae. Our laboratory and field observations indicate that a proliferation of algae might be expected on Red Sea coral reefs with future ocean warming.  相似文献   

3.
This study analyzes trends in the extent of major floods in the lower reach of Songkhram River Basin, one of the most important areas for aquatic biological production in the Lower Mekong River Basin. We first classified the time series Landsat imagery acquired at a 2-year interval between 2000 and 2006 using the unsupervised classification method. We then analyzed the extent of major floods through the image matrix analysis on seasonal land cover map pairs. Additionally, we estimated flood volumes and discharge rates for each time series. We finally analyzed the extent of land uses that were affected by major flood events. Accuracy assessment showed that the extent of major floods was accurately mapped. Analysis of trends of major floods revealed that there was a considerable variation in the extent through 2006, with the flood decreasing since 2002. Analysis of flood risk areas based on the 2000–2004 data showed that about 3.04% of the study areas was at high risk of being flooded. Between 2000 and 2006, about 5.5% of the study area that are classified as agriculture and built-up land uses was affected by major floods. Our estimates on flood volumes and discharge rates are consistent with the data from other studies. Overall findings suggest that accurate mapping of major floods and flood risk areas using space and time dependent data can be important for developing protocols for flash flood early warning and flood risk management and mitigation. Output GIS maps and data combined with crude assumptions about water flow will serve as the baseline data to estimate the amount of water that flows in and out of the basin. Further research should focus on integration of social science research to evaluate the socio-economic impacts of major floods and identifying coping strategies of affected communities.  相似文献   

4.
The processes underlying the distributional limits of both corals and coral reefs can be elucidated by examining coral communities at high latitudes. Coral-dominated communities in eastern Australia cover a latitudinal range of >2,500 km, from the northern Great Barrier Reef (11°S) to South West Rocks (31.5°S). Patterns of coral species richness from 11 locations showed a clear separation between the Great Barrier Reef and subtropical sites, with a further abrupt change at around 31°S. Differences in community structure between the Great Barrier Reef and more southern sites were mainly attributable to higher cover of massive corals, branching Acropora, dead coral and coralline algae on the Great Barrier Reef, and higher cover of macroalgae and bare rock at more southern sites. The absence of some major reef-building taxa (i.e., staghorn Acropora and massive Porites) from most subtropical sites coincided with the loss of reef accretion capacity. Despite high cover of hard corals in communities at up to 31°S, only Lord Howe Island contained areas of reef accretion south of the Great Barrier Reef. Factors that have been hypothesized to account for latitudinal changes in coral community structure include water temperature, aragonite saturation, light availability, currents and larval dispersal, competition between corals and other biota including macroalgae, reduced coral growth rates, and failure of coral reproduction or recruitment. These factors do not operate independently of each other, and they interact in complex ways.  相似文献   

5.
The coral reefs at Cahuita National Park, Caribbean coast of Costa Rica, specifically at the CARICOMP site Meager Shoal, have been monitored since 1999. Complete data sets from 2000 and 2004 have shown that live coral cover has increased less than 3 % (from 15 to 17 %), but non-coralline algae cover has increased much (63 to 74 %) and coralline algae cover has decreased (17 to 5 %) significantly. The proportion of affected colonies by diseases, injuries and bleaching decreased from 24 % in 2000 to 10 % in 2004, but the difference was not statistically significant. Densities of the urchin Diadema antillarum increased, and are probably help to maintain the macroalgae biomass low, while those of Echinometra viridis decreased significantly. The coral reef at Cahuita National Park continues to be impacted by chronic terrigenous sediments and does not show a significant recovery since the late 1970's.  相似文献   

6.
Coral core records, combined with measurements of coral community structure, were used to assess the long-term impact of multiple environmental stressors on reef assemblages along an environmental gradient. Multiple proxies (luminescent lines, Ba/Ca, δ15N) that reflect different environmental conditions (freshwater discharge, sediment delivery to the nearshore, nutrient availability and transformations) were measured in Porites coral cores collected from nearshore reefs at increasing distance from the intensively agricultural region of Mackay (Queensland, Australia). The corals provide a record (1968–2002) of the frequency and intensity of exposure to terrestrial runoff and fertilizer-derived nitrogen and were used to assess how the present-day coral community composition may have been influenced by flood-related disturbance. Reefs closest to the mainland (5–32 km offshore) were characterized by low hard coral cover (≤10%), with no significant differences among locations. Distinct annual luminescent lines and elevated Ba/Ca values (4.98 ± 0.63 μmol mol−1; mean ± SD) in the most inshore corals (Round Top Island; 5 km offshore) indicated chronic, sub-annual exposure to freshwater and resuspended terrestrial sediment that may have historically prevented reef formation. By contrast, corals from Keswick Island (32 km offshore) indicated episodic, high-magnitude exposure to Pioneer River discharge during extreme flood events (e.g., 1974, 1991), with strongly luminescent lines and substantially enriched coral skeletal δ15N (12–14‰). The reef assemblages at Keswick and St. Bees islands were categorically different from all other locations, with high fleshy macroalgal cover (80.1 ± 7.2% and 62.7 ± 7.1%, respective mean ± SE) overgrowing dead reef matrix. Coral records from Scawfell Island (51 km offshore) indicated little exposure to Pioneer catchment influence: all locations from Scawfell and further offshore had total hard and soft coral cover comparable to largely undisturbed nearshore to middle shelf reefs of the southern Great Barrier Reef.  相似文献   

7.
Monitoring of coral reefs has become a major tool for understanding how they are changing, and for managing them in a context of increasing degradation of coastal ecosystems. The Global Coral Reef Monitoring Network (GCRMN) has near-global coverage, but there are few remote sites free of direct human impact that can serve as reference sites. This study provides baseline data for the French Iles Eparses in the Mozambique Channel, Western Indian Ocean (WIO), whose coral reefs are little known owing to their limited accessibility, and have been free from fishing pressure for over 20 years. Surveys of coral reef health and fish community structure were undertaken at four of the islands (Europa, Bassas da India, Juan de Nova and Glorieuses) in 2011–2013. Monitoring was conducted using standardized GCRMN methods for benthos and fish communities, at the highest taxonomic level. Benthic cover showed a latitudinal gradient, with higher coral cover and conversely lower algae cover (60% and 14% respectively) in the south of the Mozambique Channel. This could be due to the geomorphology of the islands, the latitudinal temperature gradient, and/or the history of chronic stress and bleaching events during the last decades. Fish also showed a latitudinal gradient with higher diversity in the north, in a center of diversity for the western Indian Ocean already recognized for corals. An exceptional biomass fish was recorded (approximately 3500 kg/ha excluding sharks, compared to a maximum of 1400 kg/ha elsewhere in the WIO). The presence of large predators and sharks in all the islands as well as the absence of fleshy benthic algae were indicators of the good health of the reef systems. Nevertheless, these islands are beginning to experience illegal fishing, particularly in the north of the Mozambique Channel, demonstrating their vulnerability to exploitation and the need to protect them as reference sites for coral reef studies, including of climate change impacts, for the region and globally.  相似文献   

8.
In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has > 50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annularis. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (+/- 0.04 SD) to 1.74% (+/- 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.  相似文献   

9.
McClanahan TR 《Oecologia》2008,155(1):169-177
The hypothesis that herbivory is higher in areas without fishing and will increase the rate at which hard coral communities return to pre-disturbance conditions was tested in and out of the marine protected areas (MPA) of Kenya after the 1998 El Niño Southern Oscillation (ENSO). Herbivory was estimated by assay and biomass methods, and both methods indicated higher herbivory in fishery closures. Despite higher herbivory, the effect of the ENSO disturbance was larger within these closures, with reefs undergoing a temporary transition from dominance by hard and soft coral to a temporary dominance of turf and erect algae that ended in the dominance of calcifying algae, massive Porites, Pocillopora and a few faviids six years after the disturbance. The fished reefs changed the least but had a greater cover of turf and erect algae and sponge shortly after the disturbance. Higher herbivory in the fishery closures reduced the abundance and persistence of herbivore-susceptible erect algae and created space and appropriate substratum for recruiting corals. Nonetheless, other post-settlement processes may have had strong influences such that annual rates of coral recovery were low (~2%) and not different between the management regimes. Recovery, as defined as and measured by the return to pre-disturbance coral cover and the dominant taxa, was slower in fishery closures than unmanaged reefs.  相似文献   

10.
Coral reef degradation is often associated with regime shifts from coral‐ to macroalgal‐dominated reefs. These shifts demonstrate that under certain conditions (e.g. coral mortality, decrease in herbivory, increased nutrients supply) some macroalgae may overgrow corals. The outcome of the competition is dependent on algal aggressiveness and the coral susceptibility. In undisturbed reefs, herbivore grazing is regulating macroalgal cover, thus preventing the latter from overgrowing corals. However, some macroalgae have evolved strategies not only to outcompete corals but also to escape herbivory to some extent, allowing overgrowth of some coral species in undisturbed reefs. Epizoism represents one of those successful strategies, and has been previously documented with red algae, cyanobacteria and Lobophora variegata (Dictyotales, Phaeophyceae). Here we report a new case of epizoism leading to coral mortality, involving a recently described species of Lobophora, L. hederacea, overgrowing the coral Seriatopora caliendrum (Pocilloporidae) in undisturbed reefs in New Caledonia.  相似文献   

11.
Acute environmental disturbances impact on habitat quality and resource availability, which can reverberate through trophic levels and become apparent in species’ dietary composition. In this study, we observed a distinct dietary shift of newly settled and juvenile coral trout (Plectropomus maculatus) following severe coral reef habitat degradation after a river flood plume affected the Keppel Islands, Australia. Hard coral cover declined by ~28 % in the 2 yr following the 2010–2011 floods, as did the abundance of young coral trout. Gut contents analysis revealed that diets had shifted from largely crustacean-based to non-preferred prey fishes following the disturbances. These results suggest that newly settled and juvenile coral trout modify their diet and foraging strategy in response to coral habitat degradation. This bottom-up effect of habitat degradation on the diet of a top coral reef predator may incur a metabolic cost, with subsequent effects on growth and survival.  相似文献   

12.
Using the same methodology and identical sites, we repeat a study dating from 1973 and quantify cover of hard coral species, soft corals, sponges, hard substratum and soft substratum, and density of a commercially important reef fish species, the graysby Cephalopholis cruentata, along a depth-gradient of 3–36 m on the coral reefs of Curaçao. The objective was to determine the multi-decade change in benthic coral reef cover and structural complexity, and their effect on densities of an associated reef fish species. Total hard coral cover decreased on average from 52% in 1973 to 22% in 2003, representing a relative decline of 58%. During this time span, the cover of hard substratum increased considerably (from 11 to 58%), as did that of soft corals (from 0.1 to 2.2%), whereas the cover of sponges showed no significant change. Relative decline of hard coral cover and of reef complexity was greatest in shallow waters (near the coast), which is indicative of a combination of anthropogenic influences from shore and recent storm damage. Cover of main reef builder coral species (Agaricia spp., Siderastrea siderea, Montastrea annularis) decreased more than that of other species, and resulted in a significant decrease in reef complexity. Although density of C. cruentata was highly correlated to cover of Montastrea and Agaricia in 1973, the loss of coral cover did not show any effect on the total density of C. cruentata in 2003. However, C. cruentata showed a clear shift in density distribution from shallow water in 1973 to deep water in 2003. It can be concluded that the reefs of Curaçao have degraded considerably in the last three decades, but that this has had no major effect on the population size of one commercially important coral-associated fish species.  相似文献   

13.
Current scientific consensus is that inshore regions of the central and southern Great Barrier Reef, Australia, are at risk of impacts from increased nutrient (as well as sediment and pesticide) loads delivered to Reef waters. Increases in the discharge of water quality contaminants to the Reef are largely a consequence of the expansion of agricultural practices in northern Queensland catchments following European settlement in the 1850s. In particular, the presence of elevated chlorophyll a and nutrient concentrations in many parts of the inshore Great Barrier Reef together with intense and extensive phytoplankton blooms following the discharge of nutrient-rich river flood waters suggest that the central and southern inshore area of the Great Barrier Reef is likely to be significantly impacted by elevated nutrient loads. The biological consequences of this are not fully quantified, but are likely to include changes in reef condition including hard and soft coral biodiversity, macroalgal abundance, hard coral cover and coral recruitment, as well as change in seagrass distribution and tissue nutrient status. Contemporary government policy is centered around promotion and funding of better catchment management practices to minimize the loss of catchment nutrients (both applied and natural) and the maintenance of a Reef wide water quality and ecosystem monitoring program. The monitoring program is designed to assess trends in uptake of management practice improvements and their associated impacts on water quality and ecosystem status over the next 10 years. A draft set of quantitative criteria to assess the eutrophication status of Great Barrier Reef waters is outlined for further discussion and refinement.  相似文献   

14.
Morrocoy National Park used to be considered the most important continental coral reef of Venezuela. However, in January of 1996, there was a massive mortality of the benthic organisms for unknown reasons. The coral reef community was monitored since 1995, the year before the event, and yearly after that, until June 1999, by sampling linear transects and quadrats. A total of 26 hard corals were recorded in the study site (Playa Mero) in 1995 (36.56% cover), which already had some deterioration because 90.86% of the living coral cover was represented basically by four species, M. annularis with 51.36%, Colpophyllia natans with 18.22%, Agaricia agaricites with 11.58% and Porites porites with 9.70%. Three months after the event, living coral cover was only 4.84% and algae, particularly Dyctiota spp. covered most of the surface (81.89%). Benthic organisms suffered massive mortality over the whole depth gradient and in most park reefs. Even after three years the reef community shows highly perturbed conditions, with 85% of the total cover represented by the categories: dead coral, dead coral overgrowth by algae and sand. From the initial coral richness of the area (26 species) only nine species were observed although in very low cover (<1%), except for M. annularis and M. franksi, which presented lightly higher percentages.  相似文献   

15.
Benthic cover, current strengths, and fish abundance and diversity were examined on 150 lagoonal patch reefs and mapped to determine their distribution, inter-relationships, and relationship to the fisheries closure in Glovers Reef Atoll. Current strength was highest at both the northern and southern ends of the atoll and largely controlled by local wind and weakly by tidal forcing. Benthic functional group distributions varied throughout the atoll and had distinct areas of dominance. In contrast, dominance of coral species was weaker, reflecting the lost cover and zonation of Acropora, Porites, and Montastraea that were reported in the 1970s. Hard and soft corals dominated the windward rim, while the central and leeward lagoon had lower current strengths and sea grass and fleshy green algae were relatively more abundant. Brown erect algae were relatively more common in the north and calcifying green and red algae the southern ends of the atoll. Only Montastraea-Agaricia agaricites distributions were similar to reports from the 1970s with high relative dominance in the southern and northeast atoll. The central-northern zone, which was described as an Acropora zone in the 1970s, was not recognizable, and Porites porites, P. astreoides, Millepora alcicornis, and Favia fragum were the most abundant species during this survey. Hard and soft coral cover abundance declined away from the reef rim and tidal channels and was associated with fast seawater turnover and high surgeonfish abundance. Consequently, the windward rim area has retained the most original and persistent hard-soft coral and surgeonfish community and is considered a priority for future management, if the goal is to protect coral from fishing impacts.  相似文献   

16.
Detriments to post-bleaching recovery of corals   总被引:6,自引:0,他引:6  
Predicting the response of coral reefs to large-scale mortality induced by climate change will depend greatly on the factors that influence recovery after bleaching events. We experimentally transplanted hard corals from a shallow reef with highly variable seawater temperature (23–36°C) to three unfished marine parks and three fished reefs with variable coral predator abundance and benthic cover. The transplanted corals were fragmented colonies collected from a reef that was relatively undisturbed by the 1997–1998 warm-water temperature anomaly, one of the most extreme thermal events of the past century, and it was assumed that they would represent corals likely to succeed in the future temperature environment. We examined the effects of four taxa, two fragment sizes, an acclimation period, benthic cover components, predators and tourists on the survival of the coral fragments. We found the lowest survival of transplants occurred in the unfished marine parks and this could be attributed to predation and not tourist damage. The density of small coral recruits approximately 6 months after the spawning season was generally moderate (~40–60/m2), and not different on fished and unfished reefs. Coral recovery between 1998 and 2002 was variable (0–25%), low (mean of 6.5%), and not different between fished and unfished reefs. There was high variability in coral mortality among the three unfished areas despite low variation in estimates of predator biomass, with the highest predation occurring in the Malindi MNP, a site with high coralline algal cover. Stepwise multiple regression analysis with 14 variables of coral predators and substratum showed that coralline algae was positively, and turf algae negatively associated with mortality of the transplants, with all other variables being statistically insignificant. This suggests that alternate food resources and predator choices are more important than predator biomass in determining coral survival. Nonetheless, large predatory fish in areas dominated by coralline algae may considerably retard recovery of eurythermal corals. This will not necessarily retard total hard coral recovery, as other more predator-tolerant taxa can recover. Based on the results, global climate change will not necessarily favor eurythermal over stenothermal coral taxa in remote or unfished reefs, where predation is a major cause of coral mortality.  相似文献   

17.
Human activity is changing environmental conditions on a global scale. Among the ecosystems that are affected by human activities, coral reefs are among the most prominent. In Brazil, the coral reefs of the Corumbau Marine Extractive Reserve (CMER) and Abrolhos National Marine Park (ANMP) in Bahia state have some of the highest coral cover in the South Atlantic Ocean. Hard coral cover, algal cover, and foraminiferal population distribution patterns were used to assess the coral reef benthic environments, and define a background that can be used in worldwide comparisons in future studies. To compare these two monitoring approaches in different coral reef environments, relative frequency data for occurrence of hard coral and algal cover, using point-intercept transects as proposed by the Reef Check protocol, and foraminiferal samples were collected from Corumbau (nearshore) and Abrolhos (offshore) in April 2005. The foraminiferal assemblage was evaluated using the FORAM index (FI — Foraminifera in Reef Assessment and Monitoring), which provides a numeric diagnosis of suitability of benthic habitat to support calcifying organisms that host algal symbionts, originally developed for Caribbean reef areas. Coral cover in the surveyed areas, both in Corumbau and in Abrolhos, ranged from 13% to 37%, while high foraminiferal diversities (H') were found in all stations. Dominance of symbiont-bearing taxa of Amphistegina lessonii and Archaias angulatus only occurred at two shallow stations, Mato Verde and Siriba, both in Abrolhos, where FI > 4.00. Stations located in Corumbau and Abrolhos had FI values < 4.00. Q-mode cluster analysis showed that foraminifers have specific preferences for physical conditions, especially hydrodynamics and light availability, which influence the FI index. Although coral cover in these areas can be considered good by regional standards, foraminifer analysis showed that the benthic system was unfavorable for symbiont-bearing foraminiferal species at most stations. This discrepancy reveals that the FI must be used with caution in areas other than the northwestern Atlantic and Caribbean where it was developed, and that some coral species can thrive in muddier conditions than can most symbiont-bearing foraminifers.  相似文献   

18.
The Northwestern Hawaiian Islands (NWHI) are considered to be among the most pristine coral reef ecosystems remaining on the planet. These reefs naturally contain a high percent cover of algal functional groups with relatively low coral abundance and exhibit thriving fish communities dominated by top predators. Despite their highly protected status, these reefs are at risk from both direct and indirect anthropogenic sources. This study provides the first comprehensive data on percent coverage of algae, coral, and non-coral invertebrates at the species level, and investigates spatial diversity patterns across the archipelago to document benthic communities before further environmental changes occur in response to global warming and ocean acidification. Monitoring studies show that non-calcified macroalgae cover a greater percentage of substrate than corals on many high latitude reef sites. Forereef habitats in atoll systems often contain high abundances of the green macroalga Microdictyon setchellianum and the brown macroalga Lobophora variegata, yet these organisms were uncommon in forereefs of non-atoll systems. Species of the brown macroalgal genera Padina, Sargassum, and Stypopodium and the red macroalgal genus Laurencia became increasingly common in the two northernmost atolls of the island chain but were uncommon components of more southerly islands. Conversely, the scleractinian coral Porites lobata was common on forereefs at southern islands but less common at northern islands. Currently accepted paradigms of what constitutes a “healthy” reef may not apply to the subtropical NWHI, and metrics used to gauge reef health (e.g., high coral cover) need to be reevaluated.  相似文献   

19.
Coral reefs are increasingly threatened by various disturbances, and a critical challenge is to determine their ability for resistance and resilience. Coral assemblages in Moorea, French Polynesia, have been impacted by multiple disturbances (one cyclone and four bleaching events between 1991 and 2006). The 1991 disturbances caused large declines in coral cover (~51% to ~22%), and subsequent colonization by turf algae (~16% to ~49%), but this phase-shift from coral to algal dominance has not persisted. Instead, the composition of the coral community changed following the disturbances, notably favoring an increased cover of Porites, reduced cover of Montipora and Pocillopora, and a full return of Acropora; in this form, the reef returned to pre-disturbance coral cover within a decade. Thus, this coral assemblage is characterized by resilience in terms of coral cover, but plasticity in terms of community composition.  相似文献   

20.
This study examines patterns of susceptibility and short-term recovery of corals from bleaching. A mass coral bleaching event began in March, 1991 on reefs in Moorea, French Polynesia and affected corals on the shallow barrier reef and to >20 m depth on the outer forereef slope. There were significant differences in the effect of the bleaching among common coral genera, with Acropora, Montastrea, Montipora, and Pocillopora more affected than Porites, Pavona, leptastrea or Millepora. Individual colonies of the common species of Acropora and Pocillopora were marked and their fate assessed on a subsequent survey in August, 1991 to determine rates of recovery and mortality. Ninety-six percent of Acropora spp. showed some degree of bleaching compared to 76% of Pocillopora spp. From March to August mortality of bleached colonies of Pocillopora was 17%, 38% recovered completely, and many suffered some partial mortality of the tissue. In contrast, 63% of the Acropora spp. died, and about 10% recovered completely. Generally, those colonies with less than 50% of the colony area affected by the bleaching recovered at a higher rate than did those with more severe bleaching. Changes in community composition four months after the event began included a significant decrease only in crustose algae and an increase in cover of filamentous algae, much of which occupied plate-like and branching corals that had died in the bleaching event. Total coral cover and cover of susceptible coral genera had declined, but not significantly, after the event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号