首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
Synodontis catfish are a species‐rich, tropical pan‐African genus that predominately occur in fluviatile environments, but which also form a small radiation within Lake Tanganyika (LT). Here we estimate Synodontis relationships, based on mitochondrial and nuclear DNA, greatly expanding previous sampling. Data were analysed using different methods of phylogenetic inference: Bayesian (also testing compositional heterogeneity), likelihood and parsimony, in order to investigate biogeographic history and the extent of intralacustrine speciation within this group. Bayesian‐relaxed clock analyses were used to estimate timings of radiations. Our analyses reveal a single origin of the LT flock with the inclusion of the nonendemic S. victoriae, and that these taxa evolved relatively recently (5.5 Ma), considerably later than the formation of LT (9–12 Ma). Two internal endemic clades diversified at a similar time (2–2.5 Ma), corresponding to a period of climate change, when lake levels dropped. We find evidence for a further species flock, composed of riverine southern African taxa, the diversification of which is very rapid, 0.8 Ma (95% HPD: 0.4–1.5) and infer a similar scenario for the diversification of this flock to southern African serrachromine cichlids in that they radiated in the now extinct lake Makgadikgadi. We also reveal that the biogeographic history of Synodontis catfish is more complex than previously thought, with nonmonophyletic geographic species groupings.  相似文献   

2.
The aim of this study was to identify genetic markers and morphological characters to distinguish Synodontis species, because certain species are extremely difficult to identify due to the taxonomically unreliable nature of prominent morphological features. Fixed allele mobility differences were obtained at eight of the 17 loci studied. Unique alleles were found at EST(B) in S. zambezensis and LGG(B) in S. nigromaculatus, whereas the outgroup species Parauchenoglanis ngamensis had private alleles at SDH(A), MPI(C) and LGG(A). The species boundaries were tested using controlled breeding studies between S. nigromaculatus and S. zambezensis. A preliminary DNA sequence (781 base pairs) analysis of the mitochondrial cytochrome b gene was done. Synodontis zambezensis, S. nigromaculatus, S. njassae and S. petricola, all with convex humeral processes, were grouped in one clade. The species S. macrostoma, S. macrostigma, S. woosnami and S. leopardinus were grouped together, but with poor resolution. Morphological characters to identify southern African Synodontis species are listed. A more detailed study is required to resolve the phylogenetic relationships of some of the species studied.  相似文献   

3.
In the fossil record, the quantification of continuous morphological variation has become a central issue when dealing with species identification and speciation. In this context, fossil taxa with living representatives hold great promise, because of the potential to characterise patterns of intraspecific morphological variation in extant species prior to any interpretation in the fossil record. The vast majority of catfish families fulfil this prerequisite, as most of them are represented by extant genera. However, although they constitute a major fish group in terms of distribution, and ecological and taxonomic diversity, the quantitative study of their past morphological variation has been neglected, as fossil specimens are generally identified based on the scarcest remains, that is, complete neurocrania that bear discrete characters. Consequently, a part of freshwater catfish history is unprospected and unknown. In this study, we explored the morphological continuous variation of the humeral plate shape in Synodontis catfishes using Elliptic Fourier Analysis (EFA), and compared extant members and fossil counterparts. We analysed 153 extant specimens of 11 Synodontis species present in the Chad basin, in addition to 23 fossil specimens from the Chadian fossiliferous area of Toros Menalla which is dated around 7 Ma. This highly speciose genus, which is one of the most diversified in Africa, exhibits a rich fossil record with several hundred remains mostly identified as Synodontis sp. The analysis of the outline of the humeral plate reveals that some living morphological types were already represented in the Chad Basin 7 My ago, and allows for the discovery of extinct species. Beside illuminating the complex Neogene evolutionary history of Synodontis, these results underline the interest in the ability of isolated remains to reconstruct a past dynamic history and to validate the relevance of EFA as a tool to explore specific diversity through time. J. Morphol. 277:1486–1496, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.

Background  

Squeaker catfishes (Pisces, Mochokidae, Synodontis) are widely distributed throughout Africa and inhabit a biogeographic range similar to that of the exceptionally diverse cichlid fishes, including the three East African Great Lakes and their surrounding rivers. Since squeaker catfishes also prefer the same types of habitats as many of the cichlid species, we hypothesized that the East African Synodontis species provide an excellent model group for comparative evolutionary and phylogeographic analyses.  相似文献   

5.
The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski 2010); however, little is known about its molecular regulation. We have studied fibroblast growth factor (FGF) pathway molecules during barbel regeneration, comparing this system to a well‐known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1‐4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature‐dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage‐specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn‐fgfr1:EGFP)pd1 completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn‐fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn‐fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al. 2011), we observed robust formation of calretinin‐positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin versus maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm versus barbel ectoderm).  相似文献   

6.
The taxonomic status of two southern African coastal pipefish species, Syngnathus temminckii and Syngnathus watermeyeri, was investigated using a combination of morphological and genetic data. Morphological data showed that S. temminckii is distinct from the broadly distributed European pipefish Syngnathus acus, and a molecular phylogeny reconstructed using mitochondrial DNA recovered S. temminckii and S. watermeyeri as sister taxa. The southern African species share an evolutionary origin with north‐eastern Atlantic Ocean and Mediterranean Sea species, including S. acus. These data support the existence of a distinct southern African clade of Syngnathus pipefishes that has diverged in situ to form the two species present in the region today.  相似文献   

7.
This integrative study examined the morphological and genetic affinities of three endemic barbel species from Italy (brook barbel Barbus caninus, Italian barbel Barbus plebejus and horse barbel Barbus tyberinus) and of putative hybrid specimens to their species of origin. Two of the species frequently occur together with the non‐native barbel Barbus barbus. DNA barcoding indicates that mitochondrial (mt) haplotypes often do not match the species expected from morphology. Linear distance measurements and meristics are not informative for discrimination of the species and putative hybrids, but a discriminant analysis of principal components (DAPC) of geometric landmark data produces reassignments largely in congruence with mt and nuclear genetic data. Cyto‐nuclear conflicts confirm the presence of hybridization in B. plebejus and B. tyberinus and identify additional introgressed specimens. A comparison between mixed genotypes and their morphology‐based assignment reveals no predictable pattern. The finding that most individuals of the morphologically similar B. plebejus and B. tyberinus have very high assignment probabilities to their respective species suggests that the presented approach may serve as a valuable tool to distinguish morphologically very similar taxa.  相似文献   

8.
Southern Africa has economically exploited populations of terete gracilarioids on the cool temperate west coast and numerous species of endemic and Indo‐Pacific tropical Gracilariaceae on the south and east coasts. Gross morphological characters have been the main means of identification, and incorrect applications have led to a number of misidentifications. In this study, small subunit rDNA and RUBISCO spacer sequences were used to determine phylogenetic relationships. Whereas rDNA sequences successfully differentiate major groups within the family as well as species belonging to the Gracilariopsis and the Curdiea/Melanthalia clade, RUBISCO spacer sequencing was required to distinguish between species of Gracilaria. The southern African gracilarioid complex (stringy, terete, elongate members of the Gracilariaceae) was resolved into three species: Gracilaria gracilis, Gracilariopsis longissima, and Gracilariopsis funicularis. South African Gracilaria protea was shown to be conspecific with tropical Indian Ocean G. corticata. Apart from G. gracilis and G. corticata, South African Gracilaria species were differentiated into a temperate‐tropical terete grouping and a temperate‐tropical flattened grouping.  相似文献   

9.
A new species, Olyra parviocula, is described from the Kameng River, Brahmaputra River drainage in Arunachal Pradesh, northeastern India. The new species differs from congeners in having small eye diameter 5–8% HL; short adipose fin, not confluent with caudal-fin, its base length 9–12% SL; dorsal-fin branched rays 6; anal-fin rays viii–xi, 8–10 and maxillary barbel almost reaching pelvic-fin base. A key to identification of all valid species of Olyra is provided.  相似文献   

10.
To explain the spatial variability of fish taxa at a large scale, two alternative proposals are usually evoked. In recent years, the debate has centred on the relative roles of present and historical processes in shaping biodiversity patterns. In Africa, attempts to understand the processes that determine the large scale distribution of fishes and exploration of historical contingencies have been under-investigated given that most of the phylogenetic studies focus on the history of the Great Lakes. Here, we explore phylogeographic events in the evolutionary history of Synodontis (Mohokidae, Siluriformes) over Africa during the Cenozoic focusing on the putative role of historical processes. We discuss how known geological events together with hydrographical changes contributed to shape Synodontis biogeographical history. Synodontis was chosen on the basis of its high diversity and distribution in Africa: it consists of approximately 120 species that are widely distributed in all hydrographic basins except the Maghreb and South Africa. We propose the most comprehensive phylogeny of this catfish genus. Our results provide support for the ‘hydrogeological’ hypothesis, which proposes that palaeohydrological changes linked with the geological context may have been the cause of diversification of freshwater fish deep in the Tertiary. More precisely, the two main geological structures that participated to shape the hydrographical network in Africa, namely the Central African Shear zone and the East African rift system, appear as strong drivers of Synodontis diversification and evolution.  相似文献   

11.
The skates (Family Rajidae) have 12 genera and possibly 28 species off southern Africa (southern Angola, Namibia, South Africa and Mozambique). The geographic and bathymetric distribution and the taxonomic composition of the southern African skate fauna are analysed and the distribution mapped. The southern African skate fauna is best known off the temperate west coast of South Africa from the intertidal to approximately 1,200 meters, but poorly known below 1,200 m and sketchily known in warm-temperate and tropical parts of the area. Southern African skates of the temperate continental shelves above 100 m are not diverse and regularly include one species of the genus Dipturus, one species of Leucoraja, two species of Raja (including R. straeleni, the most abundant skate in southern African waters) and the giant skate Rostroraja alba. All of these skates are ‘shelf overlap’ species that range onto the outer shelves and uppermost slopes, and none are confined to inshore environments. Skate diversity increases on the outer shelves and upper slopes. At least half of the skate species are endemic to the southern African region; other species also occur off East or West Africa, a few extend to European waters, and records of one species, Amblyraja taaf, appear to be of strays from nearby sub-Antarctic seas. The genus Bathyraja and softnose skate group (Arhynchobatinae) are surprisingly limited (a single species) in deep-water off southern Africa (unlike other regions including the Antarctic), and almost all of southern African skates are members of the Rajinae. Amongst rajines, the tribes Amblyrajini (Amblyraja, two species, Leucoraja, two species, and Rajella, five species) Rajini (Dipturus, six species, Okamejei, one species, Raja, two species, and Rostroraja, one species), and Anacanthobatini (Anacanthobatis, two species, and Cruriraja, three species) predominate, while Gurgesiellini has a species of Neoraja and possibly two of Malacoraja.  相似文献   

12.
Cotesia sesamiae (Cameron) and Cotesia flavipes Cameron (Hymenoptera: Braconidae) are the main larval parasitoids of cereal stemborers in sub-Saharan Africa. Cotesia sesamiae is endemic to eastern and southern Africa, while C. flavipes was introduced into the region for biological control against the exotic lepidopteran Chilo partellus (Swinhoe) (Lepidoptera: Crambidae). The two are sibling parasitoids, difficult to distinguish morphologically. The introduced insect could potentially lead its African biotype to extinction because of their similar ecological niche. In order to distinguish the two species, multiplex primer-specific and PCR-RFLP tests were developed. Rapid identification of the two species was possible using primer-specific tests on DNA extracts as well as on pieces of tissue in a single PCR step followed by gel electrophoresis. The CRV1 gene of the polydnavirus, a symbiont to the wasps, was used as the marker. The results show that the morphological identifications, validated by molecular tests, are accurate in 93% of cases.  相似文献   

13.
Recent years have seen the development of molecular‐based methodologies to investigate hybridization and its impact on the evolutionary process. However, morphological characterization of hybrid zones has only scantily been considered, especially in zootaxa. Thus, the level of congruence between molecular and morphological characters when attempting to detect hybrids remains a poorly tackled area. The genets (genus Genetta) provide an ideal case study for further investigation of the respective contribution of morphology and DNA in hybrid zone characterization because (1) their morphology has recently been exhaustively explored and (2) the existence of hybrid zones in southern Africa was proposed in the literature. We assessed levels of hybridization among the southern African genets, and questioned the role of ecological factors on the hybridization patterns detected. We used an integrative approach involving nine discrete morphological characters and a diagnostic discriminant function, geometric morphometrics and sequences of cytochrome b including collection specimens. The combination of independent materials allowed us to accurately reassess the level of hybridization in southern African genets, and revealed cryptic, interspecific gene flows. Morphology unambiguously detected a low number of G. maculata × G. tigrina hybrids and rejected the hypothesis of a large intergradation zone in KwaZulu‐Natal, thus supporting the species status of the two genets. Cytochrome b analyses revealed: (1) cryptic, massive hybridization between G. tigrina and the sympatric G. felina, and (2) a trace of reticulation (one sequence) between G. tigrina and the allopatric G. genetta. The type specimen of G. mossambica Matschie, 1902 is considered to be a morphological hybrid between G. maculata and G. angolensis. Remarkably, the morphological approaches (discrete characters and morphometrics) proved complementary to conclusions derived from cytochrome b sequences. Whilst morphometrics was generally unable to accurately identify all putative hybrids, this approach revealed diagnostic cranial shape differences between recognized species as well as the cryptic G. ‘letabae’ (included in the super‐species G. maculata). Morphometrics also confirmed the diagnostic value and age dependency of discrete characters. Our integrative approach appeared necessary to the detection of cryptic hybridizations and to the comprehensive characterization of hybrid zones. The recurrent detection of hybrids exhibiting tigrina‐like coat patterns may suggest (1) asymmetric hybridization of G. tigrina males to females of other species and (2) positive selection for tigrina‐like phenotype in South African habitats, but these hypotheses will have to be further tested using other sources of evidence. Despite the precise mosaic of hybrid zones identified in southern African genets, the environmental factors that shape patterns of distribution of hybrids remain unclear. Nevertheless, in the light of our range reassessment, it appears that seasonality of precipitation and periods of annual frost may play stringent roles in the distribution of genets. The complementarity of our results based on morphology and molecules is regarded as encouraging for the further development of integrative approaches in order to better understand the complex phenomena that underlie hybridization processes. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 11–33.  相似文献   

14.
The tribe Sisyphini Mulsant was recently redefined following the transfer of the endemic southern African genus Epirinus Dejean from the polyphyletic tribe Deltochilini Lacordaire. A molecular phylogeny of the southern African members of Sisyphini supports Epirinus as sister to Sisyphus Latreille and recovered three major clades in Sisyphus classified here as subgenera Sisyphus (Neosisyphus Müller) stat. rev. , Sisyphus (Parasisyphus Barbero, Palestrini & Zunino) stat.n. and Sisyphus (Sisyphus) stat.n. A molecular clock analysis suggests that Sisyphus and Epirinus diverged from their last common ancestor during the Lower to Middle Oligocene (c. 29.37 Ma). Biogeographical analysis indicated that southern African Sisyphus species are centred in the east and northeast in Highveld grassland and warmer savannah regions. By contrast, Epirinus species are largely restricted to the southwest and southeast in the cooler winter and bimodal rainfall regions plus arid highland Karoo and Highveld grasslands. Based on morphological and biogeographical differences between Epirinus and Sisyphus, we propose that the monogeneric Epirinus be placed in its own tribe, Epirinini van Lansberge stat. rev.  相似文献   

15.
Synopsis Some aspects of the ecology of the freshwater catfishSynodontis (Pisces: Mochocidae) in Kpong Headpond (Ghana) were studied. Five species were encountered, namelySynodontis schall, S. gambiensis, S. ocellifer, S. velifer andS. eupterus. S. ocellifer andS. velifer were not recorded in the area before impoundment and might have entered the headpond as eggs or young from the main Volta Lake. Length: weight relationships for the two most important species can be described by the equations: Log W = - 1.76 + 3.12log L (maleS. schall), Log W = -1.33 + 2.89log L (femaleS. schall) and Log W = - 0.39 + 2.07log L (S. gambiensis, sexes combined).Synodontis is omnivorous and generally browses on benthic deposits. Adults feed mostly on chironomids, plant material and aquatic insects. The genus displays sexual dimorphism by having a short urino-genital papilla in most adult males. ForS. schall, one season of major spawning activity occurs per year from mid to late September with first time spawners between 20.0–30.0 cm SL. TheSynodontis species studied lay between 2000 to 209000 eggs per spawning season.  相似文献   

16.
17.
In southern France, Diplozoon gracile (Monogenea, Polyopisthocotylea), parasitizes four sympatric cyprinids. One of these host species, Barbus meridionalis, naturally hybridizes with another species of barbel, Barbus barbus, which is never parasitized by D. gracile under natural conditions. This hybridization has previously been studied and described as an introgression of B. barbus by B. meridionalis. The hybrids are parasitized by D. gracile, and parasite prevalence increases in proportion to the introgression rate, i.e., the percentage of B. meridionalis genes. The causes for this preferential distribution of the parasite in the hybrid population are analysed on the basis of ecological and ethological differences between the two parent species.  相似文献   

18.
The small size and apparent external morphological similarity of the minute salamanders of the genus Thorius have long hindered evolutionary studies of the group. We estimate gene and species trees within the genus using mitochondrial and nuclear DNA from nearly all named and many candidate species and find three main clades. We use this phylogenetic hypothesis to examine patterns of morphological evolution and species coexistence across central and southern Mexico and to test alternative hypotheses of lineage divergence with and without ecomorphological divergence. Sympatric species differ in body size more than expected after accounting for phylogenetic relationship, and morphological traits show no significant phylogenetic signal. Sympatric species tend to differ in a combination of body size, presence or absence of maxillary teeth, and relative limb or tail length, even when they are close relatives. Sister species of Thorius tend to occupy climatically similar environments, which suggests that divergence across climatic gradients does not drive species formation in the genus. Rather than being an example of cryptic species formation, Thorius more closely resembles an adaptive radiation, with ecomorphological divergence that is bounded by organism‐level constraints. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 622–643.  相似文献   

19.
In this study, morphological differences were found that corroborate earlier results that showed the existence of six species within the previously monospecific African pike genus Hepsetus. Additional genetic data (coI, mtDNA and rag1, nDNA) confirm the morphology‐based species delineations. Deep genetic divergences imply a relatively old age for diversification within the genus. An identification key for the six species is provided in the present study.  相似文献   

20.
Barbels are skin sensory appendages found in fishes, reptiles and amphibians. The zebrafish, Danio rerio, develops two pairs of barbels- a short nasal pair and a longer maxillary pair. Barbel tissue contains cells of ectodermal, mesodermal and neural crest origin, including skin cells, glands, taste buds, melanocytes, circulatory vessels and sensory nerves. Unlike most adult tissue, the maxillary barbel is optically clear, allowing us to visualize the development and maintenance of these tissue types throughout the life cycle. This video shows early development of the maxillary barbel (beginning approximately one month post-fertilization) and demonstrates a surgical protocol to induce regeneration in the adult appendage (>3 months post-fertilization). Briefly, the left maxillary barbel of an anesthetized fish is elevated with sterile forceps just distal to the caudal edge of the maxilla. A fine, sterile spring scissors is positioned against the forceps to cut the barbel shaft at this level, establishing an anatomical landmark for the amputation plane. Regenerative growth can be measured with respect to this plane, and in comparison to the contralateral barbel. Barbel tissue regenerates rapidly, reaching maximal regrowth within 2 weeks of injury.Techniques for analyzing the regenerated barbel include dissecting and embedding matched pairs of barbels (regenerate and control) in the wells of a standard DNA electrophoresis gel. Embedded specimens are conveniently photographed under a stereomicroscope for gross morphology and morphometry, and can be stored for weeks prior to downstream applications such as paraffin histology, cryosectioning, and/or whole mount immunohistochemistry. These methods establish the maxillary barbel as a novel in vivo tissue system for studying the regenerative capacity of multiple cell types within the genetic context of zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号