首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heavy metals can be adsorbed by living or non-living biomass. Submerged aquatic plants can be used for the removal of heavy metals. In this paper, lead, zinc, and copper adsorption properties of Ceratophyllum demersum (Coontail or hornwort) were investigated and results were compared with other aquatic submerged plants. Data obtained from the initial adsorption studies indicated that C. demersum was capable of removing lead, zinc, and copper from solution. The metal biosorption was fast and equilibrium was attained within 20 min. Data obtained from further batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (q(max)) onto C. demersum were 6.17 mg/g for Cu(II), 13.98 mg/g for Zn(II) and 44.8 mg/g for Pb(II). Kinetics of adsorption of zinc, lead and copper were analysed and rate constants were derived for each metal. It was found that the overall adsorption process was best described by pseudo second-order kinetics. The results showed that this submerged aquatic plant C. demersum can be successfully used for heavy metal removal under dilute metal concentration.  相似文献   

2.
高原湿地草海水生植物多样性变化研究   总被引:1,自引:0,他引:1  
采用文献对比,结合野外补点调查和观测,研究高原湿地草海水生植物多样性变化.结果表明:近三十年来,到草海越冬的黑颈鹤种群有逐渐增大趋势,1985年223只、2005年506只,到2011年约为1000只.2005年草海共有维管束植物49种,隶属25科37属,较1983年新增5科10属11种,2012年调查发现草海水生植被朝沼泽植被方向演替发展,荆三棱群落与水葱、李氏禾、水莎草和灯芯草群落一起发展为草海湖滨带主要优势挺水植物群落.空心莲子草在水体东部、东南及东北部入侵危害严重.外界干扰是草海生物多样性变化的主要原因,减少人为负面干扰、维护草海及周边环境稳定是保护和增加水生植物多样性的重要举措.  相似文献   

3.
Spatial heterogeneity is common in aquatic conditions, but few studies have examined the effects of heterogeneous distributions of biological factors on aquatic plants. Spirogyra (Spirogyra arcta) coexists with many submerged macrophytes, such as Ceratophyllum demersum, but no study has examined the effects of heterogeneous distributions of spirogyra on the growth of submerged plants. We grew the submerged plant C. demersum in three homogeneous, aquatic conditions (0, 50 and 100% of the water surface in the container was evenly covered by spirogyra, referred to as ‘control’, ‘50%’ and ‘100%’, respectively) and two patchy conditions (the left half of the water surface in the container was not covered by spirogyra and 50% and 100% of the water surface in the right half of the container was evenly covered by spirogyra, referred to as ‘50%‐patchy’ and ‘100%‐patchy’, respectively). Compared with the control, the 100% treatment greatly decreased the biomass and number of ramets of C. demersum, but the 50% treatment did not. Growth of C. demersum in the left half of the container did not differ significantly between the control and the two heterogeneous treatments (50%‐patchy and 100%‐patchy). In addition, growth of C. demersum in the right half of the container did not differ between the 100% and the 100%‐patchy treatment or between the 50% and the 50%‐patchy treatment. Our results suggest that C. demersum can tolerate shading by spirogyra to a certain extent and that heterogeneous distributions of spirogyra do not affect its growth.  相似文献   

4.
Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.  相似文献   

5.
A new aggregative index called modified risk assessment code (mRAC) was developed based on heavy metal toxicity and fractionation in aquatic sediment. Results of the application of mRAC to assess metal pollution in surface sediment samples of Anzali international wetland revealed that the new index led to more precise results than those of other prevalent aggregative indexes, such as modified degree of contamination (mCd) and ecological risk index (RI). Based on assessment by mRAC, sediments of the study area were at high or very high potential adverse effect levels, compared to using mCd and RI where sediments were at a moderate or low potential adverse effect level. This is due to mRAC taking both metal toxicity and fractionation into account.  相似文献   

6.
Breeding ecology of the Black-crowned Night Heron (Nycticorax nycticorax) was studied in a mono-specific colony in the Anzali wetland, Northern Iran during the breeding season of 2016. The breeding period lasted from mid-May to late July. The average clutch size was 3.1±0.6 eggs and the breeding success 77.6%. No significant differences were found between nests built on trunks and those built on branches of trees. The clutch size and breeding success appeared to be independent of the structural variables of the nesting site (diameter of trees, height from the ground, height of nests from the canopy, nest number per tree, location of nests on trunks and branches). No significant difference was found between the timing of the start of incubation and the height of nests above the ground. The average vertical and horizontal distances between nests was one metre. Fish, particularly Carassius gibelio, dominated the diet of the nestlings.  相似文献   

7.
8.
This review addresses the global problem of heavymetal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. Heavymetal contamination in aquatic ecosystems due to discharge of industrial effluents may pose a serious threat to human health. Alkaline precipitation, ion exchange columns, electrochemical removal, filtration, and membrane technologies are the currently available technologies for heavy metal removal. These conventional technologies are not economical and may produce adverse impacts on aquatic ecosystems. Phytoremediation of metals is a cost-effective "green" technology based on the use of specially selected metal-accumulating plants to remove toxic metals from soils and water. Wetland plants are important tools for heavy metal removal. The Ramsar convention, one of the earlier modern global conservation treaties, was adopted at Ramsar, Iran, in 1971 and became effective in 1975. This convention emphasized the wise use of wetlands and their resources. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. The extensive rhizosphere of wetland plants provides an enriched culture zone for the microbes involved in degradation. The wetland sediment zone provides reducing conditions that are conducive to the metal removal pathway. Constructed wetlands proved to be effective for the abatement of heavymetal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.  相似文献   

9.
  • Two closely related alien submerged aquatic plants were introduced into Europe. The new invader (Elodea nuttallii) gradually displaced E. canadensis even at sites where the latter was well established. The aim of the study was to evaluate the combined effects of environmental factors on several phenotypic characteristics of the two Elodea species, and to relate these phenotypic characteristics to the invasion success of E. nuttallii over E. canadensis.
  • In a factorial design, Elodea plants were grown in aquaria containing five different nitrogen concentrations and incubated at five different light intensities. We used six functional traits (apical shoot RGR), total shoot RGR, relative elongation, root length, lateral spread, branching degree) to measure the environmental response of the species. We calculated plasticity indices to express the phenotypic differences between species.
  • Light and nitrogen jointly triggered the development of phenotypic characteristics that make E. nuttallii a more successful invader in eutrophic waters than E. canadensis. The stronger invader showed a wider range of phenotypic plasticity. The apical elongation was the main difference between the two species, with E. nuttallii being more than two times longer than E. canadensis. E. canadensis formed dense side shoots even under high shade and low nitrogen levels, whereas E. nuttallii required higher light and nitrogen levels.
  • We found that under more eutrophic conditions, E. nuttallii reach the water surface sooner than E. canadensis and through intensive branching outcompetes all other plants including E. canadensis. Our findings support the theory that more successful invaders have wider phenotypic plasticity.
  相似文献   

10.
Concentrations of four metals (Cu, Zn, Pb, and Cd) in the sediments of the Anzali Lagoon in the northern part of Iran were determined to evaluate the level of contamination and spatial distribution. The sediments were collected from 21 locations in the lagoon. At each lagoon site a core, 60 cm long, was taken. The ranges of the measured concentrations in the sediments are as follows: 17–140 mg kg?1 for Cu, 20–113 mg kg?1 for Zn, 1–37 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in surficial (0-20 cm) and 16–87 mg kg?1 for Cu, 28.5–118 mg kg?1 for Zn, 3–20 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in deep (40–60 cm) sediments. The results of the geoaccumulation index (Igeo) show that Cd causes moderate to heavy pollution in most of the study area. Environmental risk evaluation showed that the pollution in the Anzali Lagoon is moderate to considerable and the ranking of the contaminants followed the order: Cd > Cu > Pb > Zn. Some locations present severe pollution by metals depending on the sources, of which sewage outlets and phosphate fertilizers are the main sources of contaminants to the area.  相似文献   

11.
12.
Phytochelatin synthase (PCS) gene encoding key enzyme for heavy metal detoxification and accumulation has been characterised from different sources and used to develop a technology for bioremediation. Past efforts provided limited success and contradictory results. Therefore, functional characterisation of PCS gene from new sources into different target systems is considered as an important task in the area of bioremediation. Earlier, we isolated and functionally characterised PCS gene from an aquatic macrophyte Ceratophyllum demersum L., a metal accumulator aquatic plant. Expression of this gene, CdPCS1, in tobacco enhanced PC synthesis and metal accumulation of transgenic tobacco plants. In the present study, we have expressed CdPCS1 in more diverse systems, Escherichia coli and Arabidopsis, and studied growth and metal accumulation of transgenic organisms. The expression of CdPCS1 in E. coli offered tolerance against cadmium as well as higher accumulation accompanied with PCS1 activity. The expression of CdPCS1 in Arabidopsis showed a significant enhanced accumulation of heavy metal(loid)s in aerial parts without significant difference in growth parameters in comparison to wild-type Arabidopsis plants. Our study suggests that CdPCS1 can be utilised for enhancing bioremediation potential of different organisms using biotechnological approaches.  相似文献   

13.
A well-developed aerenchyma is a major characteristic of aquatic plants. However, because such tissues are also found in wetland and terrestrial plants, it is not always possible to use their presence or absence to distinguish aquatic species. Whereas patterns of aerenchyma in roots have been studied in detail, those of the shoots have not. We collected and tested 110 species of various aquatic and wetland plants, including ferns (5), basal angiosperms (5), monocots (65), and eudicots (35). Three common and two rare types of aerenchyma were observed in their roots (three schizogeny and two lysigeny), plus five types of schizogeny in their shoots. We re-confirmed that, although a well-developed aerenchyma is more common in most organs of aquatic plants than in wetland plants, this presence cannot be used as strict evidence for the aquatic quality of vascular plants. Here, aerenchyma patterns were stable at the genus level, and the consistency of pattern was stronger in the roots than in the shoots. Furthermore, significant trends were verified in several higher taxa, and those consistencies of patterns partially coincided with their phylogeny.  相似文献   

14.
选择乐安河—鄱阳湖湿地典型植物群落,采用重要值方法评价各样点植物群落特征并筛选出典型优势植物,通过室内理化测试分析不同生境中优势植物植株及其根区土壤中重金属Cu、Pb、Cd的含量;采用生物富集系数(BCF)方法评价不同优势植物对重金属Cu、Pb、Cd的富集特性。结果表明:研究区湿地植物以草本为主,在各样点共发现124种物种,包括蕨类植物2科2属2种,种子植物40科97属122种,并从中筛选出羊蹄、红蓼、鼠曲草、紫云英、苎麻等5种富集能力较强的优势植物;植物根区土壤中的Cu、Cd含量均超过土壤环境质量三级标准,而且Cu、Cd的最高含量分别为824.03、5.03 mg·kg-1;不同优势植物对Cu、Pb、Cd等3种重金属元素中的1种或2种表现出较强的富集能力,其中优势物种红蓼对Cu具有较强的富集能力,含Cu量最高为148.80 mg·kg-1,另一种优势物种鼠曲草对三种元素的生物富集系数均较高,且对Cd的最高富集含量为15.17 mg·kg-1,对Cd的生物富集系数最高值为19.14,高于其他植物10倍以上,鼠曲草对重金属Cd具有富集植物的基本特征,且对Cu和Cd具有共富集特征并具有较高的耐性,紫云英、羊蹄等对Cd的富集能力也较强。上述5种优势植物种群对鄱阳湖湿地Cu、Pb、Cd等重金属污染物的生态修复具有一定参考价值,可作为鄱阳湖湿地重金属污染修复植物的选择对象。  相似文献   

15.
水生双翅目昆虫是监测水体重金属污染的理想对象。文章归纳用于监测重金属污染的水生双翅目昆虫的种类,重点介绍水生双翅目昆虫在重金属污染下外部形态、内部结构、生化及分子水平的变化,以及相关生物标志物的研究,为水生双翅目昆虫用于水体重金属污染的生物监测提供科学依据。  相似文献   

16.
Human activities such as land clearing and intensive land use around water bodies, particularly wetlands, have a detrimental impact on water quality and quantity, aquatic plant communities, and associated wetland fauna. Lake Alexandrina and Lake Albert are internationally significant Ramsar wetlands located at the terminus of the Murray River, Australia's longest river system. Agriculture, water regulation, and extraction and droughts have had a detrimental impact on native plant communities in the lakes. We studied the influence of young (<1–3 years) and old (8–11 years) plantings of a native sedge (bulrush), Schoenoplectus tabernaemontani, to facilitate the establishment of aquatic plant communities in comparison with remnant and control sites. We also measured how planting structure (height, stand width, and stem density) changed with age in comparison with remnant sites. Results suggest that as plantings age they get substantially wider and have a greater maximum height, although do not reach similar stand widths by 11 years when compared to remnant areas. However, old plantings do not differ from remnant habitats in relation to aquatic plant species richness, counts of aquatic plants, and community composition. Young plantings have substantially less abundant and diverse plant communities, but are developing on a similar trajectory to old plantings. It is likely that planting sedges along lake shorelines causes a breakwater effect that facilitates the recolonization of wetland plants between the planted area and the water's edge. Management agencies should consider restoring native sedges to increase aquatic biodiversity, and potentially reduce erosion.  相似文献   

17.
The morphometric characteristics of the European Pond Turtle, Emys orbicularis, were studied at Anzali lagoon on the southern coast of the Caspian Sea. Males were on average (N=249) with 272.0?g significantly lighter than females with 447.0?g, and average carapace length was significantly smaller (123.0?mm in males, 139.0 in females). Females exceeded males also in all other studied characters (carapace width, plastron length, plastron width, and scute height). The sex ratio of male to female was 1 to 1.03, and the comparison of total tail length and cloaca-tail tip length revealed a difference between the position of the cloaca in both sexes, a character useful for sex determination in this species.  相似文献   

18.
Submerged aquatic vegetation (SAV) in lake littoral zones is an inland water wetland type that provides numerous essential ecosystem services, such as supplying food and habitat for fauna, regulating nutrient fluxes, stabilizing sediments, and maintaining a clear water state. However, little is known on how inland SAV quantities are changing globally in response to human activities, where loss threatens the provisioning of these ecosystem services. In this study, we generate a comprehensive global synthesis of trends in SAV quantities using time series (>10 years) in lakes and identify their main drivers. We compiled trends across methods and metrics, integrating both observational and paleolimnological approaches as well as diverse measures of SAV quantities, including areal extent, density, or abundance classes. The compilation revealed that knowledge on SAV is mostly derived from temperate regions, with major gaps in tropical, boreal, and mountainous lake-rich regions. Similar to other wetland types, we found that 41% of SAV times series are largely decreasing mostly due to land use change and resulting eutrophication. SAV is, however, increasing in 28% of cases, primarily since the 1980s. We show that trends and drivers of SAV quantities vary regionally, with increases in Europe explained mainly by management, decreases in Asia due to eutrophication and land use change, and variable trends in North America consistent with invasive species arrival. By providing a quantitative portrait of trends in SAV quantities worldwide, we identify knowledge gaps and future SAV research priorities. By considering the drivers of different trends, we also offer insight to future lake management related to climate, positive restoration actions, and change in community structure on SAV quantities.  相似文献   

19.
Land application of biosolids to improve agricultural productivity is a cost-effective approach for resource recovery. Unfortunately, municipal biosolids often contain high concentrations of heavy metals, including zinc and copper. In this study, a co-cropping technique was investigated using a known zinc hyperaccumulator, Sedum alfredii with a grain crop, Zea mays. After a 3-mo growth trial, the results indicate that when Z. mays is co-cropped with S. alfredii, heavy metals accumulated in the grains were significantly reduced when compared to monoculture cropping. Co-cropping improved the growth of both plant species. In addition, the biosolids maintained stable pH, N-P-K concentrations, germination potential, and water content after the plant treatment, regardless of the plant species used in the trial. In conclusion, co-cropping with hyperaccumulators may be an effective approach to reducing the risk of contaminant uptake in edible crops.  相似文献   

20.
Metal accumulations in sediments and plants of constructed and natural wetlands were compared in two wetlands constructed by the Tennessee Valley Authority (TVA) for the treatment of acid mine drainage and a natural wetland. Load rates and removal efficiencies of most metals were generally greater in the constructed wetlands than in the natural wetland. There were similar sediment and plant metal concentrations between one constructed wetland and the natural wetland and greater metal concentrations in the sediments and plants in the other constructed wetland compared to the natural wetland. Data indicate that Mn, Zn, Cu, Ni, B, and Cr are being accumulated in the plants at all three wetlands, although accumulation of metals by these plants accounts for only a small percentage of the removal of the annual metal load supplied to each wetland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号