首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

2.
Effect of mercury or lead on the growth, bioaccumulation and some enzyme activities of one of the most common algae in River Nile,Scenedesmus bijuga, was determined. The cell count and chlorophylla content decreased with an increase in mercury or lead concentrations in a culture medium, particularly at higher doses. Higher mercury and lead uptake was observed with increasing concentration of the elements. The alga accumulated appreciably more mercury than lead. At higher doses, the two elements strongly suppressed some enzyme activities of primaryS. bijuga metabolism.  相似文献   

3.
Summary The filter feeding blue tilapia, Tilapia aurea, was fed three different algae. Blue tilapia ingestion of two green algae, Chlamydomonas sp. and Ankistrodesmus falcatus and the filamentous blue-green alga, Anabaena flos-aquae, ranged from 21%–89% of the available cells. There were significant differences in the assimilation of algal carbon by the fish depending on the alga fed; A. flos-aquae was the easiest to assimilate (83%). The fish respired significantly less of the Chlamydomonas sp. ingested carbon (15%). The gross growth efficiency of fishes fed either green alga was not significantly different (22%–24%), but these efficiencies were significantly less than the gross growth efficiency of fish fed A. flos-aquae (46%). The carbon budgets for fish feeding on the green algae were similar to that constructed from the literature for a congener fed a mixed algae diet. However, the assimilation component of the budget for blue tilapia fed A. flos-aquae was 2 times greater than that of the literature budget.  相似文献   

4.
The presence of up to 500 μg sulfur·l?1 of an equimolar mixture of cysteine and methionine had virtually no effect on the SO42- uptake rate of Navicula pelliculosa, (Bréb.) Hilse whereas the rate of Ankistrodesmus falcatus (Corda) Ralfs was decreased by the presence of 500 μg S· l?1 and Anabaena flos-aquae (Lyngbye) Bréb. by 50 μg S·l?1. Primary productivity in these axenic cultures was affected (decreased) only in A. falcatus. The C:S uptake ratio was lowest in N. pelliculosa and highest in A. falcatus. Considering these species as representative of groups of naturally occurring algae, patterns of SO42- uptake and primary productivity in a eutrophic and a moderately oligotrophic lake reflected the results of the algal culturing experiments: SO42- uptake rates, relative to primary productivity, were higher in the presence of diatoms and bluegreen algae and lower when green algae were present; the addition of the cysteine I methionine mixture to the lake waters decreased the rate of microplankton SO42- uptake in correlation with the makeup of the algal community; primary productivity decreased upon the addition of cysteine I methionine when green algae were relatively abundant. It is concluded that, in most fresh water systems, the effects of organic sulfur pollution on algal SO42- uptake and primary productivity are insignificant as compared to other ecological changes that occur due to that pollution.  相似文献   

5.
Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m?2 · d?1. This was elevated to 39.6 g · m?2 · d?1 with a three‐dimensional (3‐D) screen, and to 47.7 g · m?2 · d?1 by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty‐six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan‐obacteria [blue–green algae]) self‐seeded from the GWR and demonstrated yearly cycling. Silica (SiO2) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%–25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega‐3 fatty acids a consistent component. Mathematical modeling of algal produ‐ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp‐ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega‐3 products. Based on the 3‐D prod‐uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat‐ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US).  相似文献   

6.
Outbreak of blue-green algal blooms, with associated unsightly scum and unpleasant odor, occurs frequently in eutrophic lakes. We conducted feeding experiments to study ingestion and digestion of Microcystis aeruginosa by tilapia (Oreochromis niloticus) under laboratory conditions and field testing to reduce Microcystis blooms by stocking tilapia in Lake Yuehu and other eutrophic waters in Ningbo, China between 2000 and 2003. Our results show that tilapia was capable of ingesting and digesting a large quantity of Microcystis. Digestion efficiency ranged from 58.6 to 78.1% at water temperature of 25 °C. Ingestion rate increased with increasing fish weight and water temperature. Intensive blooms occurred in Lake Yuehu in both 1999 and 2000. The lake was stocked with silver carp (Hypophthalmichthys molitrix), bighead (Aristichthys nobilis) and a freshwater mussel (Hyriopsis cumingii) at a total biomass of 9.8 g m−3 in early 2001, and tilapia at 3–5 g m−3 in April of 2002. From June to October, average phytoplankton density decreased from 897.6×106 cells l−1 in 2000 to 291.7×106 cells l−1 in 2001 and 183.0×106 cells l−1 in 2002. Compared to 2000, the annual average phytoplankton biomass in 2001 and 2002 decreased by 48.6% and 63.8%, respectively. The blue-green algal biomass which made up 70% of the total phytoplankton biomass in 2000 was reduced to 22.1% in 2001 and 11.2% in 2002. Meanwhile, Secchi depth increased from 20–50 cm to 55–137 cm during the same time period. Similar results were observed in some other eutrophic waters. For example, algal bloom disappeared about 20 days after tilapia fingerlings were stocked (8–15 g m−3) to a pond in Zhenhai Park. Chlorophyll a concentration and phytoplankton production declined dramatically whereas water transparency increased substantially. However, the impacts of tilapia on nitrogen and phosphorus dynamics in natural lakes need further investigation. Our studies revealed that stocking tilapia is an effective way to control algal blooms in eutrophic waters, especially in lakes where nutrient loading cannot be reduced sufficiently, and where grazing by zooplankton cannot control phytoplankton production effectively.  相似文献   

7.
This study focuses on the role of wind exposure and storm events, in interaction with trophic status and temperature, on the competition between two species: Microcystis aeruginosa and a typical green alga. It is based on a water column model containing ecological and fluid mechanic features including mixing and shear stress at the bottom. This model addresses for the first time the impact of storm events (inducing sediment and nutrient resuspension) on algal dynamics. Simulations with realistic environmental forcings were performed with different sets of wind, temperature, and trophic conditions. With normal temperatures, conditions for dominance and bloom formation of M. aeruginosa in summer are restricted to hypertrophic waters with low wind exposure. Higher wind exposure (above 2 m s?1) impairs the formation blooms even in favorable trophic conditions and enhances the dominance of green algae. Hotter temperatures allow the dominance of M. aeruginosa for lower phosphorus conditions and higher wind exposure and lead to the exclusion of green algae for high phosphorus content and low wind exposure. Nevertheless, high wind exposure (above 3 m s?1) still prevents dense bloom formation and allows the coexistence of both species. Storm events bring two counterbalancing features: sediment and nutrient resuspension. The first leads to a decrease of phytoplankton density in response to high turbidity, and the second leads to an increase and better maintenance of M. aeruginosa blooms due to high phosphorus concentration released in the water. This result depends on the timing of the event and on general wind exposure as phosphorus release only benefits M. aeruginosa if exposure to wind is low.  相似文献   

8.
The photosynthetic performance of macroalgae isolated in Antarctica was studied in the laboratory. Species investigated were the brown algae Himantothallus grandifolius, Desmarestia anceps, Ascoseira mirabilis, the red algae Palmaria decipiens, Iridaea cordata, Gigartina skottsbergii, and the green algae Enteromorpha bulbosa, Acrosiphonia arcta, Ulothrix subflaccida and U. implexa. Unialgal cultures of the brown and red algae were maintained at 0°C, the green algae were cultivated at 10°C. IK values were between 18 and 53 μmol m?2 s?1 characteristic or low light adapted algae. Only the two Ulothrix species showed higher IK values between 70 and 74 μmol m?2 s?1. Photosynthesis compensated dark respiration at very low photon fluence rates between 1.6 and 10.6 μmol m?2 s?1. Values of α were high: between 0.4 and 1.1 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the brown and red algae and between 2.1 and 4.9 μmol O2 g?1 FW h?1 (μmol m?2 s?1)?1 in the green algal species. At 0°C Pmax values of the brown and red algae ranged from 6.8 to 19.1 μmol O2 g?1 FW h?1 and were similarly high or higher than those of comparable Arctic-cold temperate species. Optimum temperatures for photosynthesis were 5 to 10°C in A. mirabilis, 10°C in H. grandifolius, 15°C in G. skottsbergii and 20°C or higher in D. anceps and I. cordata. P: R ratios strongly decreased in most brown and red algae with increasing temperatures due to different Q10 values for photosynthesis (1.4 to 2.5) and dark respiration (2.5 to 4.1). These features indicate considerable physiological adaptation to the prevailing low light conditions and temperatures of Antarctic waters. In this respect the lower depth distribution limits and the northern distribution boundaries of these species partly depend on the physiological properties described here.  相似文献   

9.
Abstract

The aim of this study was to quantify algal colonisation on anthropogenic surfaces (viz. building facades and roof tiles) using chlorophyll a (chl a) as a specific biomarker. Chl a was estimated as the initial fluorescence F0 of ‘dark adapted’ algae using a pulse-modulated fluorometer (PAM-2000). Four isolates of aeroterrestrial green algae and one aquatic isolate were included in this study. The chl a concentration and F0 showed an exponential relationship in the tested range between 0 and 400 mg chl a m?2. The relationship was linear at chl a concentrations <20 mg m?2. Exponential and linear models are presented for the single isolates with large coefficients of determination (exponential: r2 > 0.94, linear: r2 > 0.92). The specific power of this fluorometric method is the detection of initial algal colonisation on surfaces in thin or young biofilms down to 3.5 mg chl a m?2, which corresponds to an abundances of the investigated isolates between 0.2 and 1.5 million cells cm?2.  相似文献   

10.
1. Exotic invasive species modify natural food webs in a way frequently hard to predict. In several aquatic environments in Brazil the introduction of Oreochromis niloticus (tilapia) was followed by changes in water quality. Yet, because of its rapid and easy growth, this fish has been used in many aquaculture programmes around the country. 2. To measure the effects of tilapia on the phytoplankton community and on water conditions of a large tropical reservoir in south‐eastern Brazil (Furnas Reservoir), we performed two in situ experiments using three controls (no fish) and three tilapia enclosures (high fish density). Abiotic and biotic parameters were measured at 4 day intervals for 28 days. 3. Fish presence increased nitrogen (N) and phosphorus (P) availability (ammonium 260 and 70% mean increase – first and second experiment; and total phosphorus 540 and 270% mean increase) via excretion. Nutrient recycling by fish can thus be significant in the nutrient dynamics of the reservoir. The higher chlorophyll a concentration in the experimental fish tanks (86 and 34 μg L?1, first and second experiment, respectively) was the result of a positive bottom‐up effect on the phytoplankton community (approximately 2 μg L?1 in the reservoir and control tank). 4. Because tilapia feed selectively on large algae (mainly cyanobacteria and diatoms), several small‐sized or mucilaginous colonial chlorophyceans proliferated at the end of the experiments. Thus, the trophic cascade revealed strong influences on algal composition as well as on biomass. 5. Tilapia can contribute to the eutrophication of a waterbody by both top‐down and bottom‐up forces. In particular, by supplying considerable amount of nutrients it promotes the increase of fast growing algae. Tilapia must be used cautiously in aquaculture to avoid unexpected environmental degradation.  相似文献   

11.
The strictly aquatic breathing Nile tilapia, Oreochromis niloticus is an extremely hypoxia-tolerant fish. To augment our understanding of the effects of hypoxia on anaerobic glycolysis in the Nile tilapia, we studied the effect of short-term for 1 day (trial 1) and long-term for 30 days (trial 2) hypoxia on a selected glycolytic enzymes activity and mRNA expression in liver and white muscle. The hypoxic oxygen concentrations used in the two trials were 2, 1, and 0.5 mg O2 L?1 for comparison with a control normoxic group 8 mg O2 L?1. The activity of phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) in liver and white muscle except liver LDH decreased in trial 1 and increased in trial 2. Assessments of mRNA levels in trial 1 revealed that PFK was downregulated and LDH was upregulated in liver and white muscle, while PK fluctuated between upregulation in liver and downregulation in white muscle. Meanwhile, PK and LDH were upregulated while PFK was similar to control values in both tissues in trial 2. Comet assay results demonstrated an increase in DNA damage that was directly proportional to increasing hypoxic concentrations. This damage was more pronounced in trial 1. This suggests that the Nile tilapia cope better with long-term hypoxic conditions, possibly as an adaptive response.  相似文献   

12.
Eight bacterial strains identified as P1, P2, Y1, Y2, W1, W2, G, and R were isolated from a long-term laboratory culture of the green alga Chlorella ellipsoidea. Although it is unknown how these bacterial strains have been maintained with the C. ellipsoidea culture, all appeared to promote the growth of C. ellipsoidea. Co-inoculation of each bacterial strain with C. ellipsoidea resulted in 0.5–3 times greater algal growth than that of C. ellipsoidea alone. The most effective bacterium (i.e., strain P1) was selected and further characterized. Biochemical analysis and transmission electron microscopy revealed that strain P1 is closely related to the genus Brevundimonas. Sequence analysis of the 16S rRNA of strain P1 showed 99.9 and 99.4% nucleotide sequence identity to that of B. nasdae and B. vesicularis, respectively. In addition to the growth promotion of C. ellipsoidea by strain P1, the growth of strain P1 was also significantly enhanced by co-culturing with C. ellipsoidea, indicating a symbiotic relationship between the bacterium and alga. Scanning electron microscopy showed the direct adhesion of strain P1 cells to the surface of C. ellipsoidea cells, as well as the development of abundant crinkles on the surface of co-cultured C. ellipsoidea cells. Handling editor: J. Padisak  相似文献   

13.
With the human intensification of agricultural and industrial activities, large amount of reduced nitrogen enter into the biosphere, which consequently results in the development of global eutrophication and cyanobacterial blooms. However, no research had reported the effect of ammonia toxicity on the algal succession. In this study, we investigated the ammonia toxicity to 19 algal species or strains to test the hypothesis that ammonia may regulate the succession of cyanobacterial blooms and the distribution of common algal species in freshwater lakes. The bloom‐forming cyanobacterium Microcystis aeruginosa PCC 7806 suffered from ammonia toxicity at high pH value and light intensity conditions. Low NH4Cl concentration (0.06 mmol L?1) resulted in the decrease of operational PSII quantum yield by 50% compared with the control exposed to 1000 μmol photons m?2 s?1 for 1 h at pH 9.0 ± 0.2, which can be reached in freshwater lakes. Furthermore, the tolerant abilities to NH3 toxicity of 18 freshwater algal species or strains were as follows: hypertrophication species > eutrophication species > mesotrophication species > oligotrophication species. The different sensitivities of NH3 toxicity in this study could well explain the distributing rule of common algal species in the freshwater lakes of different trophic states. Meanwhile, the cyanobacterial bloom (e.g. M. aeruginosa) always happened at the low concentration of ammonia in summer, and disappeared with the decrease of ammonia. This may be attributed to the toxic effect of ammonia to M. aeruginosa in spring (the average and maximum ammonia concentration were 0.08 and 0.72 mmol L?1 in 33 Chinese lakes), and the low level of NH3‐N in summer and fall in the lakes might be used as preferred nitrogen nutrition by M. aeruginosa, rather than with toxicity. Therefore, ammonia could be a key factor to determine the distribution of common algal species and cyanobacterial bloom in the freshwater systems.  相似文献   

14.
Abstract Non-toxic strains (by mouse toxin assay test) of unicellular Microcystis aeruginosa and short filamentous Anabaena cylindrica were fed to Daphnia carinata in the laboratory at an algal volume concentration of 4.0 mm3 L?1 at 24 ± 1°C. The filtering rates (FR, mL animal?1 hr?1) of D. carinata on M. aeruginosa and A. cylindrica increased with increasing body length (L, mm), and were expressed as a power curve: FR = 0.061L209. and FR = 0.232L2.09, respectively. The potential for control of natural blue-green algal populations by D. carinata grazing is discussed briefly.  相似文献   

15.
Copper (II) accumulation has been investigated in the green alga Scenedesmus subspicatus G. Brinkmann considering both adsorption and uptake kinetics. Experiments were conducted in a Cu- and PH-buffered medium at different free Cu2+ concentrations that were neither growth limiting nor toxic. We distinguished between adsorption on the cell surface and intracellular uptake by extracting copper from the cells with EDTA. Data from short-term experiments were compared with data obtained from experiments under steady state conditions. The accumulation of Cu can be described by two processes, an initial fast adsorption occurring within a minute followed by a slower intracellular uptake. Metal uptake followed Michaelis-Menten kinetics and is mediated by two systems, one with low and the other with high affinity. The maximum uptake rates (1.30 × 10?-10 mol·[g dry wt algae]?1· min?1, 3.67 × 10?-9 mol·[g dry wt algae]?1·min?1), and the half-saturation constants (6.84 × 10?-14 M, 2.82 × 10?-12 M) for the two uptake systems were determined using the Lineweaver-Burk plot. The calculated maximum concentration of binding sites on the surface of the algae is initially higher (9.0 × 10?-6 mol Cu.[g dry wt algae]?1) than under steady state conditions (2.9 × 10?-6 mol Cu·[g dry wt algae]?1). This suggests that the initial binding to the algal surface comprises the binding to specific transport ligands as well as to inert adsorption sites. The conditional stability constant of the Cu binding to surface ligands was calculated as log KCu= 11.0 at pH 7.9. This freshwater alga has a high ability to accumulate Cu, reflecting its adaptation to the bioavailable concentration of copper.  相似文献   

16.
Fluorescence spectral signatures from 28 algal cultures aredescribed.The cultures are split into four groups accordingto their accessory pigments. Phycocyanin and phycoerythrin,characteristic pigments of cyanobacteria, form groups I andII. The characteristic pigment found in group III is chlorophyllb (green and rasinophyte algae) and in group IV it is chlorophyllc (diatoms, dinophytes and some other algae).This preliminarycatalogue of spectral signatures was used to characterize fivenatural phytoplankton communities from brackish water environmentsas a comparison with phytoplankton species found in the samples.Accessory pigments such as phycocyanin and phycoerythrin, characterizinggroups I and II, can be used for identification without confusion.Distinguishing between groups III and IV is more complicated,because their accessory pigments do not have their own fluorescence.These groups can be characterized by increased fluorescenceof chlorophyll a induced by energy excited through chlorophyllb and c. The possibilities of applying the spectral fluorescencesignatures approach to the characterization of natural communitiesare discussed.  相似文献   

17.
In the past decade, algal waste has been used as useful natural resource for production of enormous range of products that have wide economical and commercial importance. Pectinases are group of enzymes that have wide commercial applications. Hence, current study was designed to utilize algal biomass for the production of pectinases using submerged (SmF) and solid state fermentation (SSF) techniques. Different algal sources including brown (Dictyopteris polypodioides, Sargassum wightii and Dictyopteris divaricata) and green algae (Ulva lactuca and Codium tomentosum) were used and U. lactuca was found to be the most suitable substrate. Several bacterial and fungal strains were screened and among them Bacillus licheniformis KIBGE-IB4 was selected based on maximum pectinase production. SmF and SSF were studied utilizing U. lactuca as a substrate and results revealed that enzyme production was favoured by SmF (2457?±?3.31?U?mg?1) as compared to SSF (1432?±?1.46?U?mg?1). Parametric optimization of pectinase production indicated that B. licheniformis KIBGE-IB4 requires 10.0?g L–1 U. lactuca as a biomass in the medium with a pH 7.0 when incubated at 37?°C for 24 hours. Likewise, production of pectinase using algal resource was also compared with that of the conventional agricultural biomass and it was observed that when U. lactuca was used, the selected bacterial isolate produced a higher yield of enzyme than sugarcane bagasse and rice husk. Hence, it is anticipated that algal biomass can be efficiently utilized as an environmental friendly bioresource for the production of industrially important hydrolytic enzymes.  相似文献   

18.
Halogenating activities detected in Antarctic macroalgae   总被引:1,自引:0,他引:1  
 Halogenating activities were determined in samples of 18 cultivated species of brown, red and green macroalgae from the Antarctic. Activities for the halogenating organic compounds with bromide, iodide and chloride were found. Investigated red algae (rhodophytes) showed higher brominating and iodinating activities compared to brown (phaeophytes) and green (chlorophytes) algae. The highest brominating and iodinating activities were measured in the red algae Plocamium cartilagineum (1.11±0.01 U g-1 wet algal weight and 0.18 U g-1 wet algal weight, respectively) and Myriogramme mangini (3.62±0.17 U g-1 wet algal weight and 4.5 U g-1 wet algal weight, respectively). Chlorinating activities were detected in the red alga Plocamium cartilagineum only (0.086 U g-1 wet algal weight). Received: 12 February 1996/Accepted: 20 June 1996  相似文献   

19.
On sedimentary tidal flats in the Wadden Sea near the Island of Sylt, the periwinkleLittorina littorea occurred preferentially on clusters and beds of mussels and on shell beds (100 to 350 m−2), achieved moderate densities on green algal patches or mats (20 to 50 m−2), and remained rare on bare sediments (<5 m−2). Green algae covering>10% of sediment surface appeared in summer on approximately one third of the tidal zone, mainly in the upper and sheltered parts and almost never on mussel and shell beds. In feeding experiments,L. littorea ingested more of the dominant alge,Enteromorpha, than ofUlva, irrespective of whether or not algae were fresh or decaying. The tough thalli ofChaetomorpha were hardly consumed. Snails feeding onEnteromorpha produced fecal pellets from which new growth ofEnteromorpha started. In the absence of periwinkles,Enteromorpha developed on mussels and the attached fucoids. Experimentally increased snail densities on sediments prevented green algal development, but the snails were unable to graze down established algal mats. It is concluded that natural densities ofL. littorea hardly affect the ephemeral mass development of green algae on sediments. However, where the snails occur at high densities, i.e. on mussel beds, green algal development may be prevented.  相似文献   

20.
Singh M  Reynolds DL  Das KC 《Bioresource technology》2011,102(23):10841-10848
The potential of mixotrophic microalgae to utilize poultry litter anaerobic digester (AD) effluent (PLDE) as nutritional growth medium was evaluated. Three algal strains viz. Chlorella minutissima, Chlorella sorokiniana and Scenedesmus bijuga and their consortium showed significant biomass productivity in 6% (v/v) concentration of PLDE in deionized water. Multiple booster dosage of PLDE supported better growth relative to a single dose PLDE. The maximum biomass productivity of 76 mg L−1 d−1 was recorded. The biomass was rich in protein (39% w/w) and carbohydrates (22%) while lipids (<10%) were low, making it most suitable as an animal feed supplement. The mixotrophic algae showed sustainable growth against variations in PLDE composition in different AD batches, thus proving to be a suitable candidate for large scale wastewater treatment with concomitant production of renewable biomass feedstock for animal feed and bioenergy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号