首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A column-switching high-performance liquid chromatography (HPLC) method is described for the determination of asiaticoside in rat plasma and bile using column-switching and ultraviolet (UV) absorbance detection. Plasma was simply deproteinated with acetonitrile prior to injection and bile was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with two six-port switching valves. Detection of asiaticoside was accurate and repeatable, with a limit of quantification of 0.125 μg/ml in plasma and 1 μg/ml in bile. The calibration curves were linear in a concentration range of 0.125–2.5 μg/ml and 1–20 μg/ml for asiaticoside in rat plasma and bile, respectively. This method has been successfully applied to determine the level of asiaticoside in rat plasma and bile samples from pharmacokinetics and biliary excretion studies.  相似文献   

2.
A simplified high-pressure liquid chromatographic method for determination of furose-mide in plasma and urine has been developed using a fluorometric detector directly coupled to the column effluent. The method includes an ether extraction from acidified biologic samples. The mobile phase used for chromatography on a reversed-phase column (C18 hydro-carbon permanently bonded to silica particles) is sufficiently acidic to induce fluorescence of furosemide. The methylester of furosemide is employed as an internal standard. The sensitivity is 0.1 and 0.25 μg per ml plasma and urine, respectively. The applicability to pharmacokinetic studies of furosemide is shown.  相似文献   

3.
A facile, sensitive and highly specific HPLC method for assaying 1-(2-chloroethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) in plasma has been developed. The drug was efficiently isolated from plasma by extraction with tert.-butyl methyl ether. A structurally related compound with similar physicochemical properties served as the internal standard (I.S.). Following evaporation of the organic solvent, the extract was reconstituted with 0.05 M ammonium acetate buffer, pH 5.0, and loaded onto a 4 μm Nova-Pak C18 column (15 cm×3.9 mm), which was preceded by a 7 μm Brownlee RP-18 precolumn (1.5 cm×3.2 mm). Chromatography was performed at ambient temperature using a mobile phase of methanol-0.1 M ammonium formate buffer, pH 3.7 (25:75, v/v). UV absorbance of the effluent was monitored at 240 nm. A flow-rate of 1.0 ml/min was used for analyzing mouse and dog plasma extracts. Under these conditions, the drug eluted at 4.0 min and was followed by the I.S. at 6.1 min. An automatic switching valve was employed to allow the precolumn to be flushed 1.5 min into the run, without interrupting the flow of the mobile phase to the analytical column, thereby preventing the apparent build-up of extractable, strongly retained, UV-absorbing components present in mouse and dog plasma. Operating in this manner, more than 100 samples could be analyzed during a day using a refrigerated autosampler for overnight injection. The method was readily adapted to the determination of SarCNU in human plasma by simply decreasing the eluent flow-rate to 0.6 ml/min, whereby SarCNU and the I.S. eluted at approximately 5.8 and 9.1 min, respectively. Furthermore, the switching valve was not necessary for the analysis of human plasma samples. With a 50-μl sample volume, the lowest concentration of SarCNU included in the plasma standard curves, 0.10 μg/ml, was quantified with a 7.8% R.S.D. (n=27) over a 2 month period. Plasma standards, with concentrations of 0.26 to 5.1 μg/ml, exhibited R.S.D. values ranging from 1.3 to 4.7%. Thermospray-ionization MS detection was used to definitively establish the specificity of the method. The sensitivity of the assay was shown by application to be more than adequate for characterizing the plasma pharmacokinetics of SarCNU in mice.  相似文献   

4.
A simple high-performance liquid chromatographic method was developed for the determination of vanillin and its vanillic acid metabolite in human plasma, red blood cells and urine. The mobile phase consisted of aqueous acetic acid (1%, v/v)–acetonitrile (85:15, v/v), pH 2.9 and was used with an octadecylsilane analytical column and ultraviolet absorbance detection. The plasma method demonstrated linearity from 2 to 100 μg/ml and the urine method was linear from 2 to 40 μg/ml. The method had a detection limit of 1 μg/ml for vanillin and vanillic acid using 5 μl of prepared plasma, red blood cells or urine. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of vanillin in patients undergoing treatment for sickle cell anemia.  相似文献   

5.
A high-performance liquid chromatographic method has been developed for the determination of a new cephalosporin antibiotic in plasma, urine and saliva (mixed saliva) using normal-phase technique and an NH2 bonded-phase column. The eluent mixture was a combination of acetonitrile and an aqueous solution of ammonium carbonate. The rapid method involved precipitation of protein from fluids by means of acetonitrile followed by automatic injection of the supernatant. The detection limit was 0.4 μg/ml for plasma, 3 μg/ml for urine and 0.03 μg/ml for saliva using UV detection.  相似文献   

6.
A reliable high-performance liquid chromatographic method has been validated for determination of gallamine in rat plasma, muscle tissue and microdialysate samples. A C18 reversed-phase column with mobile phase of methanol and water containing 12.5 mM tetrabutyl ammonium (TBA) hydrogen sulphate (22:78, v/v) was used. The flow-rate was 1 ml/min with UV detection at 229 nm. Sample preparation involved protein precipitation with acetonitrile for plasma and muscle tissue homogenate samples. Microdialysate samples were injected into the HPLC system without any sample preparation. Intra-day and inter-day accuracy and precision of the assay were <13%. The limit of quantification was 1 μg/ml for plasma, 1.6 μg/g for muscle tissue and 0.5 μg/ml for microdialysate samples. The assay was applied successfully to analysis of samples obtained from a pharmacokinetic study in rats using the microdialysis technique.  相似文献   

7.
A simple, sensitive and fully automated column-switching system by direct injection of plasma samples for determination of methotrexate and its metabolite 7-hydroxymethotrexate was developed. The system utilized a C8 alkyl-diol silica precolumn coupled with a LiChrospher RP-18 analytical column, followed by a photoreactor and fluorimetric detection. The photo-oxidative irradiation was accomplished at UV 254 nm in the presence of 0.1% hydrogen peroxide in the eluent. Studies showed that the fluorimetric response was influenced by the reaction time, the degree of the reactor's transparency and the choice of the working wavelengths. By optimizing the content of acetonitrile in the eluent, methotrexate can be separated from 7-hydroxymethotrexate completely. The method validation revealed quantitative recoveries (≥94%) with coefficients of variation ≤4.4%. The limits of detection and quantitation for determination of methotrexate were 0.20 and 0.36 ng, respectively, corresponding to 2.0 and 3.6 ng/ml for an injection volume of 100 μl. It was possible to enhance the sensitivity further by injecting larger plasma volumes, up to 500 μl.  相似文献   

8.
A reversed-phase high-performance liquid chromatographic assay for the simultaneous determination of phenytoin and fosphenytoin, a prodrug for phenytoin, in human plasma and plasma ultrafiltrate is described. For plasma, the method involves simple extraction of drugs with diethyl ether and evaporation of solvent, followed by injection of the reconstituted sample onto a reversed-phase C18 column. Plasma ultrafiltrate is injected directly into the HPLC column. Compounds are eluted using an ion-pair mobile phase containing 20% acetonitrile. The eluent is monitored by UV absorbance at 210 nm. The fosphenytoin standard curves are linear in the concentration range 0.4 to 400 μg/ml for plasma and 0.03 to 80 μg/ml for ultrafiltrate. Phenytoin standard curves are linear from 0.08 to 40 μg/ml for plasma and from 0.02 to 5.0 μg/ml for ultrafiltrate. No interferences with the assay procedure were found in drug-free blank plasma or plasma ultrafiltrate. Relative standard deviation for replicate plasma or ultrafiltrate samples was less than 5% at concentrations above the limit of quantitation for both within- and between-run calculations.  相似文献   

9.
A rapid and accurate method for the determination of tetracycline in human plasma and urine is presented. Determination of tetracycline in plasma is based on precipitation of plasma proteins with trifluoroacetic acid, followed by injection of the centrifuged plasma sample onto a μBondapak C18 column. Acetonitrile in phosphate buffer pH 2.2 is used as mobile phase. Only tetracycline, and no trace of lumecycline can be detected in plasma and urine after administration of lumecycline, indicating that lumecycline is completely degraded to tetracycline, lysine and formaldehyde in the gastrointestinal tract prior to absorption.Determination of tetracycline in urine was performed by injection of urine diluted with phosphoric acid onto a μBondapak Phenyl column. The precision of determination of tetracycline in plasma, expressed as the relative standard deviation, was < 3% at tetracycline concentrations of 0.05 and 3.7 μg/ml. Urine determinations were made with a precision of < 1.5% at tetracycline concentrations of 0.5 and 6.7 μg/ml.  相似文献   

10.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) in human plasma. The method involves protein precipitation with acetonitrile, followed by ion-pair reversed-phase chromatography on C18 column, with a 40 mM tetrabutyl ammonium bromide (TBA)–acetonitrile (65:35, v/v) mobile phase. A 20-μl volume of clear supernatant was injected after centrifugation, and the eluent was monitored at 304 nm. No interference was found either with endogenous substances or with many concurrently used drugs, indicating a good selectivity for the procedure. Calibration curves were linear over a concentration range of 0.5–20.0 μg/ml for MPA and 5–200 μg/ml for MPAG. The accuracy of the method is good, that is, the relative error is below 5%. The intra- and inter-day reproducibility of the analytical method is adequate with relative statistical deviations of 6% or below. The limits of quantification for MPA and MPAG were lower than 0.5 and 5.0 μg/ml, respectively, using 50 μl of plasma. The method was used to determine the pharmacokinetic parameters of MPA and MPAG following oral administration in a patient with renal transplantation.  相似文献   

11.
A column-switching high-performance liquid chromatographic method has been developed for the simple and sensitive analysis of BO-2727 (I) in human plasma and urine. Plasma samples were diluted with an equal volume of a stabilizer, and the mixture was directly injected onto the HPLC system. The analyte was enriched in a pre-treatment column, while endogenous components were eluted to waste. The analyte was then backflushed onto an analytical column and quantified with ultraviolet detection. Urinary concentrations were determined in a similar way except that the enriched analyte was eluted in the foreflush mode to a cation-exchange column used for chromatographic separation. The standard curves for the drug were linear in the range of 0.05–50 μg/ml in plasma and 0.5–100 μg/ml in urine. The limits of quantification for plasma and urine were found to be 0.05 μg/ml and 0.5 μg/ml, respectively. This method was used to support Phase I clinical pharmacokinetic studies.  相似文献   

12.
A high-performance liquid chromatographic (HPLC) method was developed for the determination of disodium mercaptoundecahydrododecaborate (BSH) in biological fluids. Monobromobimane was used as a precolumn derivatizing agent. A stable derivative was obtained. The derivative was separated on a C18 column using reversed-phase ion-pairing chromatography and detected by a spectrophotometric detector at 373 nm. The detection limit was 200 ng/ml (0.1 ppm boron). Calibration curves were prepared for rat urine and plasma samples. The calibration curves were linear in the range of 1 μg/ml to 100 μg/ml for urine samples and 0.2 μg/ml to 50 μg/ml for plasma samples.  相似文献   

13.
A specific method for the determination of erythromycin 2'-ethylsuccinate (EM-ES) in plasma is described. The method involves a liquid—liquid extraction procedure followed by the analysis of extracts using phase-system switching (PSS) continuous-flow fast atom bombardment (CF-FAB) liquid chromatography—mass spectrometry (LC—MS). In PSS EM-ES is enriched after analytical separation on a short trapping column, from which it is desorbed to the LC—MS interface. In this way, favourable mobile phases can be used for the LC separation and for the MS detection. Using the PSS approach a flow-rate reduction from 1.0 ml/min in the LC system to 15 μl/min going into the mass spectrometer was achieved without splitting. The determination limit for EM-ES was 0.1 μg/ml.  相似文献   

14.
An improved high-performance liquid chromatographic assay for the cytostatic drug mitomycin C in plasma is presented. The principal steps are precipitation of plasma proteins with acetonitrile, lyophilization of the supernatant and reversed-phase chromatography on a Hypersil ODS 5 μm column with 0.01 M NaH2PO4 buffer (pH 6.5)-methanol (70:30, v/v) in isocratic mode. At a flow-rate of 1.3 ml/min a column pressure of 180–220 bar resulted. Porfiromycin served as internal standard. UV detection was performed at 365 nm. Quantitation limit based on a coefficient of variation <10% in intra- and inter-day assay was 5 μg/l mitomycin C, detection limit based on a signal-to-noise ratio of 3 was 1 μg/l. Recovery was 100% and linearity was shown for the whole range of concentration (1–500 μg/l). None of the five drugs used during chemoembolisation interfered with the assay in vitro. The assay meets the requirements for pharmacokinetic studies of mitomycin C in patients as regards sensitivity and ease of use.  相似文献   

15.
A simple reversed-phase high-performance liquid chromatographic method has been developed for the simultaneous determination of theophylline, ciprofloxacin and enoxacin in plasma and saliva. The biological fluid samples were extracted with methylene chloride-isopropyl alcohol prior to isocratic chromatography on a Waters C18 μBondapak column. Ultraviolet detection was carried out at 268 nm. The assay in linear for ciprofloxacin and enoxacin (0.05–10 μg/ml), and theophylline (0.1–20 μ/ml). The assay can be used to investigate the interaction of these two fluoroquinolones with theophylline.  相似文献   

16.
A sensitive and highly automated high-performance liquid chromatography (HPLC) column-switching method has been developed for the simultaneous determination of the active metabolite III and its prodrug II, both derivatives of the oral platelet inhibitor Ro 48-3657 (I), in plasma and urine of man and dog. Plasma samples were deproteinated with perchloric acid (0.5 M), while urine samples could be processed directly after dilution with phosphate buffer. The prepared samples were injected onto a pre-column of a HPLC column switching system. Polar plasma or urine components were removed by flushing the precolumn with phosphate buffer (0.1 M, pH 3.5). Retained compounds (including II and III) were backflushed onto the analytical column, separated by gradient elution and detected by means of UV detection at 240 nm. The limit of quantification for both compounds was 1 ng/ml (500 μl of plasma) and 25 ng/ml (50 μl of urine) for plasma and urine, respectively. The practicability of the new method was demonstrated by the analysis of about 6000 plasma and 1300 urine samples from various toxicokinetic studies in dogs and phase 1 studies in man.  相似文献   

17.
A selective semi-automated solid-phase extraction (SPE) of the non-steroidal anti-inflammatory drugs diclofenac sodium, indomethacin and phenylbutazone from urine prior to high-performance liquid chromatography was investigated. The drugs were recovered from urine buffered at pH 5.0 using C18 Bond-Elut cartridges as solid sorbent material and mixtures of methanol–aqueous buffer or acetonitrile–aqueous buffer as washing and elution solvents. The extracts were chromatographed on a reversed-phase ODS column using 10 mM acetate buffer (pH 4.0)–acetonitrile (58:42, v/v) as the mobile phase, and the effluent from the column was monitored at 210 nm with ultraviolet detection. Absolute recoveries of the anti-inflammatory drugs within the range 0.02–1.0 μg/ml were about 85% for diclofenac and indomethacin, and 50% for phenylbutazone without any interference from endogenous compounds of the urine. The within-day and between-day repeatabilities were in all cases less than 5% and 10%, respectively. Limits of detection were 0.007 μg/ml for diclofenac sodium and indomethacin and 0.035 μg/ml for phenylbutazone, whereas limits of quantitation were 0.02 μg/ml for diclofenac and indomethacin and 0.1 μg/ml for phenylbutazone.  相似文献   

18.
Plasma phenobarbital (PB) concentrations in rat offspring were determined using a 9 μl capillary by high-performance liquid chromatography (HPLC). Capillary plasma which was put into a Bond Elut® cartridge column by using 1 ml of 0.01 M KH2PO4 was applied to the column with 50 μl of 2 μg/ml of acetanilide (internal standard, I.S.). After washing the column, PB and I.S. were eluted with methanol and injected into the HPLC system. There were excellent linear correlation between the amount of PB and length of the capillary at three different concentrations. Calibration for PB was linear in the range of 0–50 μg/ml. The coefficients of variation were 3.4–5.0% and 5.9–7.5% in the within-day and between-day assays, respectively. The extraction recovery rates were 87.5–105.4%. By this method, it was possible to measure plasma PB concentrations in rat offspring without killing. These results suggested that this method is very useful to determine the plasma PB concentration derived from mother’s milk in newborn rats.  相似文献   

19.
20.
Synthetic vitamin K3 (VK3, 2-methyl-1,4-naphthoquinone, or menadione) has been found to exhibit antitumor activity against various human cancer cells at relative high dose. Parallel to our study on the mechanism of VK3 action and for future clinical trials in Taiwan, we developed a simple, sensitive and accurate high-performance liquid chromatographic method for the determination of VK3 in biological fluids. VK3 was extracted from the plasma samples with n-hexane. The chromatographic separation employed an ODS analytical column (5 μm, 250 × 4.6 mm I.D.) with a mobile phase of methanol-water (70:30 v/v) and UV detection at 265 nm. On completely drying of the extraction solution, n-hexane, by a stream of nitrogen, menadione was lost to a great extent. Methanol (70%, 200 μl) was added to the extraction solvent after extraction and centrifugation to prevent the loss of menadione. The absolute recovery was 82.4±7.69% (n = 7). The within-day and between-day calibration curves of VK3 in plasma in the ranges of interest (0.01–10.00 μg/ml; 0.01–5.00 μg/ml) showed good linearity (r>0.999) and acceptable precision. The limit of quantitation of VK3 was 10 ng/ml) showed good method has been succesfully applied to a pilot pharmacokinetic study of VK3 in rabbits receiving an intravenous high-dose bolus injection of 75 mg menadiol sodium diphosphate (Synkayvite). The pharmacokinetic properties of menadione could be described adequately by an open two-compartment model. The mean half-life of menadiol (transformation to menadione) was 2.60±0.12 min. The elimination half-life, volume of distribution and plasma clearance of menadione were 26.3±2.97 min, 25.7±0.78 1, and 0.68±0.10 1/min, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号