首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Human dihydrolipoamide dehydrogenase (hE3) is a common component of α-ketoacid dehydrogenase complexes. Mutations of this homodimeric protein cause E3 deficiency and are always fatal. To investigate its reaction mechanism, we first performed multiple sequence alignment with other 17 eukaryotic E3s. According to hE3 structure and the result of multiple sequence alignment, two amino acids, T148 and R281, were subjected to mutagenesis and four hE3 mutants, T148G, T148S, R281N, and R281K, were expressed and assayed. The specific activities of T148G, T148S, R281N, and R281K are 76.34%, 88.62%, 12.50%, and 11.93% to that of wild-type E3, respectively. The FAD content analysis indicated that the FAD content of these mutant E3s were about 71.0%, 92%, 96%, and 93% that of wild-type E3, respectively. The molecular weight analysis showed that these three mutant proteins form the dimer. Kinetic data demonstrated that the Kcat of forward reaction of all mutants, except T148 mutants, were decreased dramatically. The results of kinetic study suggest that T148 is not important to E3 catalytic function and R281 play a role in the catalytic function of the E3.  相似文献   

2.
The roles of lysine-54 (K54) and glutamate-192 (E192) of human dihydrolipoamide dehydrogenase (E3) in stabilizing the thiolate-FAD intermediate during electron transfer were investigated by site-directed mutagenesis. Recombinant human E3s, wild-type, K54E, S53K54-K53S54 (SK-KS), and E192Q, were overexpressed, purified, and characterized. Only K54E and SK-KS E3s had about 25% less bound FAD compared to wild-type, implicating that K54 is crucial for the protein-FAD interaction. The specific activities of all mutant E3s were markedly decreased (<5% wild-type). In the case of K54E E3, the Km for lipoamide in the reverse reaction was increased by about twofold. Surprisingly, for both SK-KS and E192Q E3s, the Kms for both dihydrolipoamide (forward reaction) and lipoamide (reverse reaction) were markedly reduced. The catalytic rate constants (kcat/Km) for both reactions for SK-KS E3 were significantly lower than wild-type, indicating that K54 is crucial for the catalytic efficiency of the enzyme. Fluorescence spectral analyses showed that the FAD in E3s were reduced by the addition of dihydrolipoamide, and that its reoxidation by NAD+ in the mutant E3s was slower than wild-type E3. Interestingly, in K54E E3 dihydrolipoamide reduced FAD efficiently only when NAD+ was present, indicating that K54 stabilizes the thiolate-FAD interaction. The lack of the formation of thiolate-FAD intermediate in the absence of NAD+ in K54E E3 was also confirmed by CD spectra. The SK-KS mutation demonstrates that the correct sequence of residues is as critical as the nature of the amino acid residues. These results suggest that K54 plays an important role in stabilizing the thiolate-FAD intermediate during the electron transfer in the reaction, and E192 is involved in maintaining correct orientation of K54 during catalysis.  相似文献   

3.
Two site-specifically mutated human dihydrolipoamide dehydrogenases (His-452----Gln and Glu-457----Gln) were expressed in pyruvate dehydrogenase complex-deletion mutant Escherichia coli JRG1342. The expressed mutant E3s were purified to near homogeneity using DEAE-Sephacel and hydroxyapatite columns. The initial velocity measurements in the absence of products for the Gln-452 mutant E3 in the direction of NAD+ reduction showed parallel lines in double-reciprocal plots, indicating that the mutant E3, like wild-type enzyme, catalyzed E3 reaction via a ping-pong mechanism. The specific activity of the Gln-452 mutant E3 was about 0.2% of that of wild-type enzyme. Its Km for dihydrolipoamide was dramatically increased by 63-fold. The substitution of His-452 to Gln resulted in a destabilization of the transition state of human E3 catalysis by about 6.4 kcal mol-1. The Gln-457 mutant E3, unlike wild-type enzyme, catalyzed E3 reaction via a sequential mechanism in the direction of NAD+ reduction based on the intersecting lines shown on double-reciprocal plots. Its specific activity decreased to 28% of that of wild-type enzyme. Its Km for dihydrolipoamide increased about 4.3-fold. The substitution of Glu-457 to Gln resulted in a destabilization of the transition state by about 1.7 kcal mol-1. These results indicate that His-452, which is a possible proton acceptor/donor in human E3 reaction, is critical to human E3 catalysis and that the local environment around His-452 and Glu-457, which are suggested to be hydrogen-bonded, is important in the binding of dihydrolipoamide to the enzyme.  相似文献   

4.
Lau FW  Chen X  Bowie JU 《Biochemistry》1999,38(17):5521-5527
We show that residues from different subunits participate in forming the active site of the trimeric membrane protein diacylglycerol kinase (DGK) from Escherichia coli. Five likely active-site mutants were identified: A14Q, N72S, E76L, K94L, and D95N. All five of these mutants possessed significantly impaired catalytic function, without evidence of gross structural alterations as judged by their similar near-UV and far-UV circular dichroism spectra. We found that mixtures of either A14Q or E76L with N72S or K94L possessed much greater activity than the mutant proteins by themselves, suggesting that Ala14 and Glu76 may be on one half-site while Asn72 and Lys94 are on another half-site. Consistent with the shared site model, we also found that (1) peak activity of A14Q and N72S subunit mixtures occur at equimolar concentrations; (2) the maximum activity of the A14Q and N72S mixture was 20% of the wild-type enzyme, in good agreement with the theoretical maximum of 25%; (3) the activity of mutant subunits could not be recovered by mixing with the wild-type subunits; (4) a double mutant, A14Q/N72S, bearing mutations in both putative half-sites was found to inactivate wild-type subunits; (5) the concentration dependence of inactivation by the A14Q/N72S mutant could be well described by a shared site model for a trimeric protein. Unexpectedly, we found that the single mutant D95N behaved in a manner similar to the double mutant, A14Q/N72S, inactivating wild-type subunits. We propose that Asp95 plays a role in more than one active site.  相似文献   

5.
Mutagenesis was used to investigate the functional role of six pairs of aspartate and glutamate residues (D450/D1093, E482/E1125, E552/E1197, D558/D1203, D592/D1237, and E604/E1249) that are highly conserved in the nucleotide binding sites of P-glycoprotein (Mdr3) and of other ABC transporters. Removal of the charge in E552Q/E1197Q and D558N/D1203N produced proteins with severely impaired biological activity when the proteins were analyzed in yeast cells for cellular resistance to FK506 and restoration of mating in a ste6Delta mutant. Mutations at other acidic residues had no apparent effect in the same assays. These four mutants were expressed in Pichia pastoris, purified to homogeneity, and biochemically characterized with respect to ATPase activity. Studies with purified proteins showed that mutants D558N and D1203N retained 14 and 30% of the drug-stimulated ATPase activity of wild-type (WT) Mdr3, respectively, and vanadate trapping of 8-azido[alpha-(32)P]nucleotide confirmed slower basal and drug-stimulated 8-azido-ATP hydrolysis compared to that for WT Mdr3. The E552Q and E1197Q mutants showed no drug-stimulated ATPase activity. Surprisingly, drugs did stimulate vanadate trapping of 8-azido[alpha-(32)P]nucleotide in E552Q and E1197Q at a level similar to that of WT Mdr3. This suggests that formation of the catalytic transition state can occur in these mutants, and that the bond between the beta- and gamma-phosphates is hydrolyzed. In addition, photolabeling by 8-azido[alpha-(32)P]nucleotide in the presence or absence of drug was also detected in the absence of vanadate in these mutants. These results suggest that steps after the transition state, possibly involved in release of MgADP, are severely impaired in these mutant enzymes.  相似文献   

6.
Chitinases (EC 3.2.1.14) are glycosyl hydrolases that catalyze the hydrolysis of beta-(1, 4)-glycosidic bonds in chitin, the major structural polysaccharide present in the cuticle and gut peritrophic matrix of insects. Two conserved regions have been identified from amino acid sequence comparisons of family 18 glycosyl hydrolases, which includes Manduca sexta (tobacco hornworm) chitinase as a member. The second of these regions in M. sexta chitinase contains three very highly conserved acidic amino acid residues, D142, D144 and E146, that are probably active site residues. In this study the functional roles of these three residues were investigated using site-directed mutagenesis for their substitutions to other amino acids. Six mutant proteins, D142E, D142N, D144E, D144N, E146D and E146Q, as well as the wild-type enzyme, were produced using a baculovirus-insect cell line expression system. The proteins were purified by anion-exchange chromatography, after which their physical, kinetic and substrate binding properties were determined. Circular dichroism spectra of the mutant proteins were similar to that of the wild-type protein, indicating that the presence of mutations did not change the overall secondary structures. E146 was required for enzymatic activity because mutants E146Q and E146D were devoid of activity. D144E retained most of the enzymatic activity, but D144N lost nearly 90%. There was a shift in the pH optimum from alkaline pH to acidic pH for mutants D142N and D144E with minimal losses of activity relative to the wild-type enzyme. The pH-activity profile for the D142E mutation resembled that of the wild-type enzyme except activity in the neutral and acidic range was lower. All of the mutant proteins bound to chitin. Therefore, none of these acidic residues was essential for substrate binding. The results indicate that E146 probably functions as an acid/base catalyst in the hydrolytic mechanism, as do homologous residues in other glycosyl hydrolases. D144 apparently functions as an electrostatic stabilizer of the positively charged transition state, whereas D142 probably influences the pKa values of D144 and E146.  相似文献   

7.
A combination of site-directed mutagenesis and NMR chemical shift perturbation analysis of backbone and side-chain protons has been used to characterize the transient complex of the photosynthetic redox proteins plastocyanin and cytochrome f. To elucidate the importance of charged residues on complex formation, the complex of cytochrome f and E43Q/D44N or E59K/E60Q spinach plastocyanin double mutants was studied by full analysis of the (1)H chemical shifts by use of two-dimensional homonuclear NMR spectra. Both mutants show a significant overall decrease in chemical shift perturbations compared with wild-type plastocyanin, in agreement with a large decrease in binding affinity. Qualitatively, the E43Q/D44N mutant showed a similar interaction surface as wild-type plastocyanin. The interaction surface in the E59K/E60Q mutant was distinctly different from wild type. It is concluded that all four charged residues contribute to the affinity and that residues E59 and E60 have an additional role in fine tuning the orientation of the proteins in the complex.  相似文献   

8.
The activities of the eight mutant proteins of Escherichia coli RNase HI, in which the four carboxylic amino acids (Asp(10), Glu(48), Asp(70), and Asp(134)) involved in catalysis are changed to Asn (Gln) or Ala, were examined in the presence of Mn(2+). Of these proteins, the E48A, E48Q, D134A, and D134N proteins exhibited the activity, indicating that Glu(48) and Asp(134) are dispensable for Mn(2+)-dependent activity. The maximal activities of the E48A and D134A proteins were comparable to that of the wild-type protein. However, unlike the wild-type protein, these mutant proteins exhibited the maximal activities in the presence of >100 microM MnCl(2), and their activities were not inhibited at higher Mn(2+) concentrations (up to 10 mM). The wild-type protein contains two Mn(2+) binding sites and is activated upon binding of one Mn(2+) ion at site 1 at low ( approximately 1 microM) Mn(2+) concentrations. This activity is attenuated upon binding of a second Mn(2+) ion at site 2 at high (>10 microM) Mn(2+) concentrations. The cleavage specificities of the mutant proteins, which were examined using oligomeric substrates at high Mn(2+) concentrations, were identical to that of the wild-type protein at low Mn(2+) concentrations but were different from that of the wild-type protein at high Mn(2+) concentrations. These results suggest that one Mn(2+) ion binds to the E48A, E48Q, D134A, and D134N proteins at site 1 or a nearby site with weaker affinities. The binding analyses of the Mn(2+) ion to these proteins in the absence of the substrate support this hypothesis. When Mn(2+) ion is used as a metal cofactor, the Mn(2+) ion itself, instead of Glu(48) and Asp(134), probably holds water molecules required for activity.  相似文献   

9.
Three electron-transferring flavoproteins were purified to homogeneity from anaerobic, amino acid-utilizing bacteria (bacterium W6, Clostridium sporogenes, and Clostridium sticklandii), characterized, and compared with the dihydrolipoamide dehydrogenase of Eubacterium acidaminophilum. All the proteins were found to be dimers consisting of two identical subunits with a subunit Mr of about 35,000 and to contain about 1 mol of flavin adenine dinucleotide per subunit. Spectra of the oxidized proteins exhibited characteristic absorption of flavoproteins, and the reduced proteins showed an A580 indicating a neutral semiquinone. Many artificial electron acceptors, including methyl viologen, could be used with NADPH as the electron donor but not with NADH. Unlike the enzyme of E. acidaminophilum, which exhibited by itself a dihydrolipoamide dehydrogenase activity (W. Freudenberg, D. Dietrichs, H. Lebertz, and J. R. Andreesen, J. Bacteriol. 171:1346-1354, 1989), the electron-transferring flavoprotein purified from bacterium W6 reacted with lipoamide only under certain assay conditions, whereas the proteins of C. sporogenes and C. sticklandii exhibited no dihydrolipoamide dehydrogenase activity. The three homogeneous electron-transferring flavoproteins were very similar in their structural and biochemical properties to the dihydrolipoamide dehydrogenase of E. acidaminophilum and exhibited cross-reaction with antibodies raised against the latter enzyme. N-terminal sequence analysis demonstrated a high degree of homology between the dihydrolipoamide dehydrogenase of E. acidaminophilum and the electron-transferring flavoprotein of C. sporogenes to the thioredoxin reductase of Escherichia coli. Unlike these proteins, the dihydrolipoamide dehydrogenases purified from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and C. sporogenes exhibited a high homology to dihydrolipoamide dehydrogenases known from other organisms.  相似文献   

10.
Cystathionine β-synthase (CBS) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the condensation of homocysteine with serine to generate cystathionine. Homocystinuria is an autosomal recessive disorder commonly caused by a deficiency of CBS activity. Here, we characterized a novel CBS mutation (c.260C > A (p.T87N)) and a previously reported variant (c.700G > A (p.D234N)) found in Venezuelan homocystinuric patients, one nonresponsive and one responsive to vitamin B6. Both mutant proteins were expressed in vitro in prokaryotic and eukaryotic cells, finding lower soluble expression in HEK-293 cells (19% T87N and 23% D234N) compared to wild-type CBS. Residual activities obtained for the mutant proteins were 3.5% T87N and 43% D234N. Gel exclusion chromatography demonstrated a tendency of the T87N mutant to aggregate while the distribution of the D234N mutant was similar to wild-type enzyme. Using immunofluorescence microscopy, an unexpected difference in intracellular localization was observed between the wild-type and mutant proteins. While the T87N mutant exhibited a punctate appearance, the wild-type protein was homogeneously distributed inside the cell. Interestingly, the D234N protein showed both distributions. This study demonstrates that the pathogenic CBS mutations generate unstable proteins that are unable (T87N) or partially unable (D234N) to assemble into a functional enzyme, implying that these mutations might be responsible for the homocystinuria phenotype.  相似文献   

11.
Basran J  Fullerton S  Leys D  Scrutton NS 《Biochemistry》2006,45(37):11151-11161
Residues His-225 and Tyr-259 are located close to the FAD in the dehydrogenase active site of the bifunctional dimethylglycine oxidase (DMGO) of Arthrobacter globiformis. We have suggested [Leys, D., Basran, J., and Scrutton, N. S. (2003) EMBO J. 22, 4038-4048] that these residues are involved in abstraction of a proton from the substrate amine group of dimethylglycine prior to C-H bond breakage and FAD reduction. To investigate this proposal, we have isolated two mutant forms of DMGO in which (i) His-225 is replaced with Gln-225 (H225Q mutant) and (ii) Tyr-259 is replaced with Phe-259 (Y259F mutant). Both mutant enzymes retain the ability to oxidize substrate, but the steady-state turnover of the Y259F mutant is attenuated more than 200-fold. Only modest changes in kinetic parameters are observed for the H225Q mutant during steady-state turnover. Stopped-flow studies indicate that the rate of FAD reduction in the Y259F enzyme is substantially impaired by a factor of approximately 1500 compared with that of the wild-type enzyme, suggesting a key role for this residue in the reductive half-reaction of the enzyme. The kinetics of FAD reduction in the H225Q enzyme are complex and involve three discrete kinetic phases that are attributed to different conformational states of this mutant, evidence for which is provided by crystallographic analysis. Neither the H225Q enzyme nor the Y259F enzyme stabilizes the FADH(2)-iminium charge-transfer complex observed previously in stopped-flow studies with the wild-type enzyme. Our studies are consistent with a key role for Tyr-259, but not His-225, in deprotonation of the substrate amine group prior to FAD reduction. We infer that residue His-225 is likely to modulate the acid-base properties of Tyr-259 by perturbing the pK(a) of Tyr-259 and thus fine-tunes the reaction chemistry to facilitate proton abstraction under physiological conditions. Our data are discussed in the context of the crystallographic data for DMGO and also in relation to contemporary mechanisms for flavoprotein-catalyzed oxidation of amine substrates.  相似文献   

12.
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase, which simultaneously catalyzes the intramolecular rearrangement and reduction of DXP to form 2-C-methyl-d-erythritol 4-phosphate, constitutes a key enzyme of an alternative mevalonate-independent pathway for isopentenyl diphosphate biosynthesis. The dxr gene encoding this enzyme from Escherichia coli was overexpressed as a histidine-tagged protein and characterized in detail. DNA sequencing analysis of the dxr genes from 10 E. coli dxr-deficient mutants revealed base substitution mutations at four points: two nonsense mutations and two amino acid substitutions (Gly(14) to Asp(14) and Glu(231) to Lys(231)). Diethyl pyrocarbonate treatment inactivated DXP reductoisomerase, and subsequent hydroxylamine treatment restored the activity of the diethyl pyrocarbonate-treated enzyme. To characterize these defects, we overexpressed the mutant enzymes G14D, E231K, H153Q, H209Q, and H257Q. All of these mutant enzymes except for G14D were obtained as soluble proteins. Although the purified enzyme E231K had wild-type K(m) values for DXP and NADPH, the mutant enzyme had less than a 0.24% wild-type k(cat) value. K(m) values of H153Q, H209Q, and H257Q for DXP increased to 3.5-, 7.6-, and 19-fold the wild-type value, respectively. These results indicate that Glu(231) of E. coli DXP reductoisomerase plays an important role(s) in the conversion of DXP to 2-C-methyl-d-erythritol 4-phosphate, and that His(153), His(209), and His(257), in part, associate with DXP binding in the enzyme molecule.  相似文献   

13.
Endonuclease VIII from Escherichia coli is a DNA glycosylase/lyase that removes oxidatively damaged bases. EndoVIII is a functional homologue of endonuclease III, but a sequence homologue of formamidopyrimidine-DNA glycosylase (Fpg). Using multiple sequence alignments, we have identified six target residues in endoVIII that may be involved in the enzyme's glycosylase and/or lyase functions: the N-terminal proline, and five acidic residues that are completely conserved in the endoVIII-Fpg proteins. To investigate the contribution of these residues, site-directed mutagenesis was used to create seven mutants: P2T, E3D, E3Q, E6Q, D129N, D160N, and E174Q. Each mutant was assayed both for lyase activity on abasic (AP) sites and for glycosylase/lyase activity on 5-hydroxyuracil, thymine glycol, and gamma-irradiated DNA with multiple lesions. The P2T mutant did not have lyase or glycosylase/lyase activity but could efficiently form Schiff base intermediates on AP sites. E6Q, D129N, and D160N behaved essentially as endoVIII in all assays. E3D, E3Q, and E174Q retained significant AP lyase activity but had severely diminished or abolished glycosylase/lyase activities on the DNA lesions tested. These studies provide detailed predictions concerning the active site of endoVIII.  相似文献   

14.
NAD + -dependent glyceraldehyde dehydrogenases usually had lower activity in the nonphosphorylated Entner–Doudoroff (nED) pathway. In the present study, a new NAD + -dependent glyceraldehyde dehydrogenase was engineered from l-lactaldehyde dehydrogenase of E. coli (EC: 1.2.1.22). Through comparison of the sequence alignment and the active center model, we found that a residue N286 of l-lactaldehyde dehydrogenase contributed an important structure role to substrate identification. By free energy calculation, three mutations (N286E, N286H, N286T) were chosen to investigate the change of substrate specificity of the enzyme. All mutants were able to oxidate glyceraldehyde. Especially, N286T showed the highest activity of 1.1U/mg, which was 5-fold higher than the reported NAD + -dependent glyceraldehyde dehydrogenases, and 70% activity was retained at 55?°C after an hour. Compared to l-lactaldehyde, N286T had a one-third lower Km value to glyceraldehyde.  相似文献   

15.
Four amino acids critical for lactose permease function were altered using site-directed mutagenesis. The resulting Quad mutant (E269Q/R302L/H322Q/E325Q) was expressed at 60% of wild-type levels but found to have negligible transport activity. The Quad mutant was used as a parental strain to isolate suppressors that regained the ability to ferment the α-galactoside melibiose. Six different suppressors were identified involving five discrete amino acid changes and one amino acid deletion (Q60L, V229G, Y236D, S306L, K319N and ΔI298). All of the suppressors transported α-galactosides at substantial rates. In addition, the Q60L, ΔI298 and K319N suppressors regained a small but detectable amount of lactose transport. Assays of sugar-driven cation transport showed that both the Q60L and K319N suppressors couple the influx of melibiose with cations (H+ or H3O+). Taken together, the data show that the cation-binding domain in the lactose permease is not a fixed structure as proposed in previous models. Rather, the data are consistent with a model in which several ionizable residues form a dynamic coupling sensor that also may interact directly with the cation and lactose.  相似文献   

16.
Klebsiella aerogenes urease uses a dinuclear nickel active site to catalyze urea hydrolysis at >10(14)-fold the spontaneous rate. To better define the enzyme mechanism, we examined the kinetics and structures for a suite of site-directed variants involving four residues at the active site: His320, His219, Asp221, and Arg336. Compared to wild-type urease, the H320A, H320N, and H320Q variants exhibit similar approximately 10(-)(5)-fold deficiencies in rates, modest K(m) changes, and disorders in the peptide flap covering their active sites. The pH profiles for these mutant enzymes are anomalous with optima near 6 and shoulders that extend to pH 9. H219A urease exhibits 10(3)-fold increased K(m) over that of native enzyme, whereas the increase is less marked ( approximately 10(2)-fold) in the H219N and H219Q variants that retain hydrogen bonding capability. Structures for these variants show clearly resolved active site water molecules covered by well-ordered peptide flaps. Whereas the D221N variant is only moderately affected compared to wild-type enzyme, D221A urease possesses low activity ( approximately 10(-)(3) that of native enzyme), a small increase in K(m), and a pH 5 optimum. The crystal structure for D221A urease is reminiscent of the His320 variants. The R336Q enzyme has a approximately 10(-)(4)-fold decreased catalytic rate with near-normal pH dependence and an unaffected K(m). Phenylglyoxal inactivates the R336Q variant at over half the rate observed for native enzyme, demonstrating that modification of non-active-site arginines can eliminate activity, perhaps by affecting the peptide flap. Our data favor a mechanism in which His219 helps to polarize the substrate carbonyl group, a metal-bound terminal hydroxide or bridging oxo-dianion attacks urea to form a tetrahedral intermediate, and protonation occurs via the general acid His320 with Asp221 and Arg336 orienting and influencing the acidity of this residue. Furthermore, we conclude that the simple bell-shaped pH dependence of k(cat) and k(cat)/K(m) for the native enzyme masks a more complex underlying pH dependence involving at least four pK(a)s.  相似文献   

17.
To investigate the functional significance of mutations in Ferroportin that cause hereditary iron overload, we directly measured the iron efflux activity of the proteins expressed in Xenopus oocytes. We found that wild type and mutant Ferroportin molecules (A77D, N144H, Q248H and V162Δ) were all expressed at the plasma membrane at similar levels. All mutations caused significant reductions in 59Fe efflux compared to wild type but all retained some residual transport activity. A77D had the strongest effect on 59Fe efflux (remaining activity 9% of wild-type control), whereas the N144H mutation retained the highest efflux activity (42% of control). The Q248H and V162Δ mutations were intermediate between these values. Co-injection of mutant and wild-type mRNAs revealed that the A77D and N144H mutations had a dominant negative effect on the function of the WT protein.  相似文献   

18.
The heme-copper oxidases convert the free energy liberated in the reduction of O(2) to water into a transmembrane proton electrochemical potential (protonmotive force). One of the essential structural elements of the enzyme is the D-channel, which is thought to be the input pathway, both for protons which go to form H(2)O ("chemical protons") and for protons that get translocated across the lipid membrane ("pumped protons"). The D-channel contains a chain of water molecules extending about 25 A from an aspartic acid (D132 in the Rhodobacter sphaeroides oxidase) near the cytoplasmic ("inside") enzyme surface to a glutamic acid (E286) in the protein interior. Mutations in which either of these acidic residues is replaced by their corresponding amides (D132N or E286Q) result in severe inhibition of enzyme activity. In the current work, an asparagine located in the D-channel has been replaced by the corresponding acid (N139 to D; N98 in bovine enzyme) with dramatic consequences. The N139D mutation not only completely eliminates proton pumping but, at the same time, confers a substantial increase (150-300%) in the steady-state cytochrome oxidase activity. The N139D mutant of the R. sphaeroides oxidase was further characterized by examining the rates of individual steps in the catalytic cycle. Under anaerobic conditions, the rate of reduction of heme a(3) in the fully oxidized enzyme, prior to the reaction with O(2), is identical to that of the wild-type oxidase and is not accelerated. However, the rate of reaction of the fully reduced enzyme with O(2) is accelerated by the N139D mutation, as shown by a more rapid F --> O transition. Whereas the rates of formation and decay of the oxygenated intermediates are altered, the nature of the oxygenated intermediates is not perturbed by the N139D mutation.  相似文献   

19.
Seventeen mutations in beta-subunit of Escherichia coli F1-ATPase which had previously been characterized in strain AN1272 (Mu-induced mutant) were expressed in strain JP17 (beta-subunit gene deletion). Six showed unchanged behavior, namely: C137Y; G142D; G146S; G207D; Y297F; and Y354F. Five failed to assemble F1F0 correctly, namely: G149I; G154I; G149I,G154I; G223D; and P403S,G415D. Six assembled F1F0 correctly, but with membrane ATPase lower than in AN1272, namely: K155Q; K155E; E181Q; E192Q; D242N; and D242V. AN1272 was shown to unexpectedly produce a small amount of wild-type beta-subunit; F1-ATPase activities reported previously in AN1272 were referable to hybrid enzymes containing both mutant and wild-type beta-subunits. Purified F1 was obtained from K155Q; K155E; E181Q; E192Q; and D242N mutants in JP17. Vmax ATPase values were lower, and unisite catalysis rate and equilibrium constants were perturbed to greater extent, than in AN1272. However, general patterns of perturbation revealed by difference energy diagrams were similar to those seen previously, and the new data correlated well in linear free energy relationships for reaction steps of unisite catalysis. Correlation between multisite and unisite ATPase activity was seen in the new enzymes. Overall, the data give strong support to previously proposed mechanisms of unisite catalysis, steady-state catalysis, and energy coupling in F1-ATPases (Al-Shawi, M. K., Parsonage, D. and Senior, A. E. (1990) J. Biol. Chem. 265, 4402-4410). The K155Q, K155E, D242N, and E181Q mutations caused 5000-fold, 4000-fold, 1800-fold, and 700-fold decrease, respectively, in Vmax ATPase, implying possibly direct roles for these residues in catalysis. Experiments with the D242N mutant suggested a role for residue beta D242 in catalytic site Mg2+ binding.  相似文献   

20.
The pdhABCD operon of Bacillus subtilis encodes the pyruvate decarboxylase (E1alpha and E1beta), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3) subunits of the pyruvate dehydrogenase multienzyme complex (PDH). There are two promoters: one for the entire operon and an internal one in front of the pdhC gene. The latter may serve to ensure adequate quantities of the E2 and E3 subunits, which are needed in greater amounts than E1alpha and E1beta. Disruptions of the pdhB, pdhC, and pdhD genes were isolated, but attempts to construct a pdhA mutant were unsuccessful, suggesting that E1alpha is essential. The three mutants lacked PDH activity, were unable to grow on glucose and grew poorly in an enriched medium. The pdhB and pdhC mutants sporulated to only 5% of the wild-type level, whereas the pdhD mutant strain sporulated to 55% of the wild-type level. This difference indicated that the sporulation defect of the pdhB and pdhC mutant strains was due to a function(s) of these subunits independent of enzymatic activity. Growth, but not low sporulation, was enhanced by the addition of acetate, glutamate, succinate, and divalent cations. Results from the expression of various spo-lacZ fusions revealed that the pdhB mutant was defective in the late stages of engulfment or membrane fusion (stage II), whereas the pdhC mutant was blocked after the completion of engulfment (stage III). This analysis was confirmed by fluorescent membrane staining. The E1beta and E2 subunits which are present in the soluble fraction of sporulating cells appear to function independently of enzymatic activity as checkpoints for stage II-III of sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号