首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《The Journal of cell biology》1994,127(5):1159-1171
The molecular mechanism involved in packaging centromeric heterochromatin is still poorly understood. CENP-B, a centromeric protein present in human cells, is though to be involved in this process. This is a DNA-binding protein that localizes to the central domain of the centromere of human and mouse chromosomes due to its association with the 17-bp CENP-B box sequence. We have designed a biochemical approach to search for functional homologues of CENP-B in Drosophila melanogaster. This strategy relies upon the use of DNA fragments containing the CENP-B box to identify proteins that specifically bind this sequence. Three polypeptides were isolated by nuclear protein extraction, followed by sequential ion exchange columns and DNA affinity chromatography. All three proteins are present in the complex formed after gel retardation with the human alphoid satellite DNA that contains the CENP-B box. Footprinting analysis reveals that the complex occupies both strands of the CENP-B box, although it is still unclear which of the polypeptides actually makes contact with the DNA. Localization of fluorescein-labeled proteins after microinjection into early Drosophila embryos shows that they associate with condensed chromosomes. Immunostaining of embryos with a polyclonal serum made against all three polypeptides also shows chromosomal localization throughout mitosis. During metaphase and anaphase the antigens appear to localize preferentially to centromeric heterochromatin. Immunostaining of neuroblasts chromosome spreads confirmed these results, though some staining of chromosomal arms is also observed. The data strongly suggests that the polypeptides we have identified are chromosomal binding proteins that accumulate mainly at the centromeric heterochromatin. Furthermore, DNA binding assays clearly indicate that they have a high specific affinity for the human CENP-B box. This would suggest that at least one of the three proteins isolated might be a functional homologue of the human CENP-B.  相似文献   

3.
Centromere protein B (CENP-B) is a centromeric DNA-binding protein which recognizes a 17-bp sequence (CENP-B box) in human and mouse centromeric satellite DNA. The African green monkey (AGM) is phylogenetically closer to humans than mice and is known to contain large amounts of alpha-satellite DNA, but there has been no report of CENP-B boxes or CENP-B in the centromere domains of its chromosomes. To elucidate the AGM CENP-B-CENP-B box interaction, we have analyzed the gene structure, expression, biochemical properties, and centromeric localization of its CENP-B. The amino acid sequence deduced from the cloned AGM CENP-B gene was established to be highly homologous to that of human and mouse CENP-B. In particular, the DNA binding and homodimer formation domains demonstrated 100% identity to their human and mouse counterparts. Immunoblotting and DNA mobility shift analyses revealed CENP-B to be expressed in AGM cell lines. As predicted from the gene structure, the AGM CENP-B in the cell extracts exhibited the same DNA binding specificity and homodimer forming activity as human CENP-B. By indirect immunofluorescent staining of AGM mitotic cells with anti-CENP-B antibodies, a centromere-specific localization of AGM CENP-B could be demonstrated. We also isolated AGM alpha-satellite DNA with a CENP-B box-like sequence with CENP-B affinity. These results not only prove that CENP-B functionally persists in AGM cells but also suggest that the AGM genome contains the recognition sequences for CENP-B (CENP-B boxes with the core recognition sequence or CENP-B box variants) in centromeric satellite DNA.  相似文献   

4.
CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.  相似文献   

5.
The human centromere protein B (CENP-B), a centromeric heterochromatin component, forms a homodimer that specifically binds to a distinct DNA sequence (the CENP-B box), which appears within every other alpha-satellite repeat. Previously, we determined the structure of the human CENP-B DNA-binding domain, CENP-B-(1-129), complexed with the CENP-B box DNA. In the present study, we determined the crystal structure of its dimerization domain (CENP-B-(540-599)), another functional domain of CENP-B, at 1.65-A resolution. CENP-B-(540-599) contains two alpha-helices, which are folded into an antiparallel configuration. The CENP-B-(540-599) dimer formed a symmetrical, antiparallel, four-helix bundle structure with a large hydrophobic patch in which 23 residues of one monomer form van der Waals contacts with the other monomer. In the CENP-B-(540-599) dimer, the N-terminal ends of CENP-B-(540-599) are oriented on opposite sides of the dimer. This CENP-B dimer configuration may be suitable for capturing two distant CENP-B boxes during centromeric heterochromatin formation.  相似文献   

6.
CENP-B is a widely conserved centromeric satellite DNA-binding protein, which specifically binds to a 17-bp DNA sequence known as the CENP-B box. CENP-B functions positively in the de novo assembly of centromeric nucleosomes, containing the centromere-specific histone H3 variant, CENP-A. At the same time, CENP-B also prevents undesired assembly of the CENP-A nucleosome through heterochromatin formation on satellite DNA integrated into ectopic sites. Therefore, improper CENP-B binding to chromosomes could be harmful. However, no CENP-B eviction mechanism has yet been reported. In the present study, we found that human Nap1, an acidic histone chaperone, inhibited the non-specific binding of CENP-B to nucleosomes and apparently stimulated CENP-B binding to its cognate CENP-B box DNA in nucleosomes. In human cells, the CENP-B eviction activity of Nap1 was confirmed in model experiments, in which the CENP-B binding to a human artificial chromosome or an ectopic chromosome locus bearing CENP-B boxes was significantly decreased when Nap1 was tethered near the CENP-B box sequence. In contrast, another acidic histone chaperone, sNASP, did not promote CENP-B eviction in vitro and in vivo and did not stimulate specific CENP-B binding to CENP-A nucleosomes in vitro. We therefore propose a novel mechanism of CENP-B regulation by Nap1.  相似文献   

7.
We have combined in vivo and in vitro approaches to investigate the function of CENP-B, a major protein of human centromeric heterochromatin. Expression of epitope-tagged deletion derivatives of CENP-B in HeLa cells revealed that a single domain less than 158 residues from the amino terminus of the protein is sufficient to localize CENP-B to centromeres. Centromere localization was abolished if as few as 28 amino acids were removed from the amino terminus of CENP-B. The centromere localization signal of CENP-B can function in an autonomous fashion, relocating a fused bacterial enzyme to centromeres. The centromere localization domain of CENP-B specifically binds in vitro to a subset of alpha-satellite DNA monomers. These results suggest that the primary mechanism for localization of CENP-B to centromeres involves the recognition of a DNA sequence found at centromeres. Analysis of the distribution of this sequence in alpha-satellite DNA suggests that CENP-B binding may have profound effects on chromatin structure at centromeres.  相似文献   

8.
Heterochromatin protein‐1 (HP1) is a key component of heterochromatin. Reminiscent of the cohesin complex which mediates sister‐chromatid cohesion, most HP1 proteins in mammalian cells are displaced from chromosome arms during mitotic entry, whereas a pool remains at the heterochromatic centromere region. The function of HP1 at mitotic centromeres remains largely elusive. Here, we show that double knockout (DKO) of HP1α and HP1γ causes defective mitosis progression and weakened centromeric cohesion. While mutating the chromoshadow domain (CSD) prevents HP1α from protecting sister‐chromatid cohesion, centromeric targeting of HP1α CSD alone is sufficient to rescue the cohesion defects in HP1 DKO cells. Interestingly, HP1‐dependent cohesion protection requires Haspin, an antagonist of the cohesin‐releasing factor Wapl. Moreover, HP1α CSD directly binds the N‐terminal region of Haspin and facilitates its centromeric localization. The need for HP1 in cohesion protection can be bypassed by centromeric targeting of Haspin or inhibiting Wapl activity. Taken together, these results reveal a redundant role for HP1α and HP1γ in the protection of centromeric cohesion through promoting Haspin localization at mitotic centromeres in mammalian cells.  相似文献   

9.
In eukaryotes, CpG methylation is an epigenetic DNA modification that is important for heterochromatin formation. Centromere protein B (CENP-B) specifically binds to the centromeric 17 base-pair CENP-B box DNA, which contains two CpG dinucleotides. In this study, we tested complex formation by the DNA-binding domain of CENP-B with methylated and unmethylated CENP-B box DNAs, and found that CENP-B preferentially binds to the unmethylated CENP-B box DNA. Competition analyses revealed that the affinity of CENP-B for the CENP-B box DNA is reduced nearly to the level of nonspecific DNA binding by CpG methylation.  相似文献   

10.
The alphoid DNA-CENP-B (centromere protein B) complex is the first sequence-specific DNA/protein complex detected in the centromeric region of human chromosomes. In the reaction, CENP-B recognizes a 17-bp sequence (CENP-B box) and assembles two alphoid DNA molecules into a complex, which is designated complex A (Muro, Y., H. Masumoto, K. Yoda, N. Nozaki, M. Ohashi, and T. Okazaki. 1992. J. Cell Biol. 116:585-596). Since CENP-B gene is conserved in mammalian species and CENP-B boxes are found also in mouse centromere satellite DNA (minor satellite), this sequence-specific DNA-protein interaction may be important for some kind of common centromere function. In this study we have characterized the structure of CENP-B and CENP-B-alphoid DNA complex. We have shown by chemical cross-linking that CENP-B formed a dimer, and have estimated by molecular weight determination the composition of complex A to be a CENP-B dimer and two molecules of alphoid DNA. The DNA binding domain has been delimited within the NH2-terminal 125-amino acid region containing four potential alpha-helices using truncated CENP-B made in Escherichia coli cells. We have shown that CENP-B had sites highly sensitive to proteases and that the DNA binding domain was separable from the dimerizing activity by the proteolytic cleavage at 20 kD from the COOH terminus of the molecule. Thus, CENP-B may organize a higher order structure in the centromere by juxtaposing two CENP-B boxes in the alphoid DNA repeat through both the DNA-protein and protein-protein interactions.  相似文献   

11.
Centromere protein (CENP) B boxes, recognition sequences of CENP-B, appear at regular intervals in human centromeric alpha-satellite DNA (alphoid DNA). In this study, to determine whether information carried by the primary sequence of alphoid DNA is involved in assembly of functional human centromeres, we created four kinds of synthetic repetitive sequences: modified alphoid DNA with point mutations in all CENP-B boxes, resulting in loss of all CENP-B binding activity; unmodified alphoid DNA containing functional CENP-B boxes; and nonalphoid repetitive DNA sequences with or without functional CENP-B boxes. These four synthetic repetitive DNAs were introduced into cultured human cells (HT1080), and de novo centromere assembly was assessed using the mammalian artificial chromosome (MAC) formation assay. We found that both the CENP-B box and the alphoid DNA sequence are required for de novo MAC formation and assembly of functional centromere components such as CENP-A, CENP-C, and CENP-E. Using the chromatin immunoprecipitation assay, we found that direct assembly of CENP-A and CENP-B in cells with synthetic alphoid DNA required functional CENP-B boxes. To the best of our knowledge, this is the first reported evidence of a functional molecular link between a centromere-specific DNA sequence and centromeric chromatin assembly in humans.  相似文献   

12.
We previously reported that centromere protein B (CENP-B) forms a stable complex (designated complex A) containing two alphoid DNAs in vitro. Domains in the CENP-B polypeptide involved in the formation of complex A were determined in the present study with truncated derivatives expressed in Escherichia coli and in rabbit reticulocyte lysates. It was revealed by gel mobility shift analyses that polypeptides containing the NH2-terminal DNA-binding domain bind a DNA molecule as a monomer, while dimerizing at a novel hydrophobic domain in the COOH-terminal region of 59 amino acid residues. This polypeptide dimerization activity at the COOH-terminal region was also confirmed with the two-hybrid system in Saccharomyces cerevisiae cells. The results thus proved that CENP-B polypeptides form a homodimer at the COOH-terminal hydrophobic domain, each binding a DNA strand at their NH2-terminal domains. The dimerization and DNA-binding domains fall into two of the three completely conserved sequences found in human and mouse CENP-B, and complex A-forming activity was also detected in nuclear extracts of mouse cells. Metaphase-specific phosphorylation of CENP-B was also detected, but this had no effect on its complex A-forming activity. On the basis of the present results, we propose that CENP-B plays an important role in the assembly of specific centromere structures by forming unique DNA-protein complexes at the sites of CENP-B boxes on the centromeric repetitive DNA both in interphase nuclei and on mitotic chromosomes.  相似文献   

13.
The vertebrate kinetochore complex assembles at the centromere on α-satellite DNA. In humans, α-satellite DNA has a repeat length of 171bp slightly longer than the DNA in the chromatosome containing the linker histone H1. The centromere-binding protein CENP-B binds specifically to α-satellite DNA with properties of a centromeric-linker histone. Here, we analysed if linker histone H1 is present at or excluded from centromeric chromatin by CENP-B. By immunostaining we detected the presence, but no enrichment or depletion of five different H1 subtypes at centromeric chromatin. The binding dynamics of H1 at centromeric sites were similar to that at other locations in the genome. These dynamics did not change in CENP-B depleted cells, suggesting that CENP-B and H1 co-exist in centromeric chromatin with no or little functional overlap. By bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer (FRET), we revealed that the linker histone H1 subtypes H1° and H1.2 bind to centromeric chromatin in interphase nuclei in direct neighbourhood to inner kinetochore proteins.  相似文献   

14.
Chromosome instability (CIN) is a major hallmark of cancer cells and believed to drive tumor progression. Several cellular defects including weak centromeric cohesion are proposed to promote CIN, but the molecular mechanisms underlying these defects are poorly understood. In a screening for SET protein levels in various cancer cell lines, we found that most of the cancer cells exhibit higher SET protein levels than nontransformed cells, including RPE-1. Cancer cells with elevated SET often show weak centromeric cohesion, revealed by MG132-induced cohesion fatigue. Partial SET knockdown largely strengthens centromeric cohesion in cancer cells without increasing overall phosphatase 2A (PP2A) activity. Pharmacologically increased PP2A activity in these cancer cells barely ameliorates centromeric cohesion. These results suggest that compromised PP2A activity, a common phenomenon in cancer cells, may not be responsible for weak centromeric cohesion. Furthermore, centromeric cohesion in cancer cells can be strengthened by ectopic Sgo1 overexpression and weakened by SET WT, not by Sgo1-binding-deficient mutants. Altogether, these findings demonstrate that SET overexpression contributes to impaired centromeric cohesion in cancer cells and illustrate misregulated SET-Sgo1 pathway as an underlying mechanism.  相似文献   

15.
16.
Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1-INCENP and HP1-Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres.  相似文献   

17.
Centromere protein B (CENP-B) is one of the centromere DNA binding proteins constituting centromeric heterochromatin of human chromosomes. This protein was originally identified as the target antigen in autoimmune disease patients (often with scleroderma). In this study, we cloned a human CENP-B cDNA which was longer than the previously isolated one and expressed functional recombinant CENP-B in Escherichia coli. The DNA binding domain was finely located within the N-terminal 134-amino-acid residues covering a predicted helix-loop-helix (HLH) structure, by using a set of recombinant products with stepwise deletions from the C-terminus. From the analysis of their reactivity to anti-centromere sera from autoimmune disease patients, four epitopes were mapped on CENP-B antigen. In addition to two epitopes at the C-terminus, two were found on the HLH region at the N-terminus. In the analysis of the interaction between the antigen and autoantibodies, we found that the DNA binding activity of CENP-B was distorted by the attack of the anti-HLH domain antibodies in in vitro binding reactions. Our results suggest that the direct inhibition of the DNA binding activity by the autoantibodies might be involved in patients' autoimmune reactions in vivo.  相似文献   

18.
Centromeres of mammalian chromosomes are rich in repetitive DNAs that are packaged into specialized nucleoprotein structures called heterochromatin. In humans, the major centromeric repetitive DNA, alpha-satellite DNA, has been extensively sequenced and shown to contain binding sites for CENP-B, an 80-kDa centromeric autoantigen. The present report reveals that African green monkey (AGM) cells, which contain extensive alpha-satellite arrays at centromeres, appear to lack the well-characterized CENP-B binding site (the CENP-B box). We show that AGM cells express a functional CENP-B homolog that binds to the CENP-B box and is recognized by several independent anti-CENP-B antibodies. However, three independent assays fail to reveal CENP-B binding sites in AGM DNA. Methods used include a gel mobility shift competition assay using purified AGM alpha-satellite, a novel kinetic electrophoretic mobility shift assay competition protocol using bulk genomic DNA, and bulk sequencing of 76 AGM alpha-satellite monomers. Immunofluorescence studies reveal the presence of significant levels of CENP-B antigen dispersed diffusely throughout the nuclei of interphase cells. These experiments reveal a paradox. CENP-B is highly conserved among mammals, yet its DNA binding site is conserved in human and mouse genomes but not in the AGM genome. One interpretation of these findings is that the role of CENP-B may be in the maintenance and/or organization of centromeric satellite DNA arrays rather than a more direct involvement in centromere structure.  相似文献   

19.
The discovery of an homolog of the human centromeric protein B, CENP-B, in an EST database of the holocentric insect species Spodoptera frugiperda prompted us to further characterize that gene because i) CENP-B has not been described in invertebrates yet ii) it should be a milestone in the molecular characterization of the holocentric centromere of Lepidoptera.Like its human counterpart, the Sf CENP-B protein is related to the transposase of the pogo transposable element (TE) of D. melanogaster. In this paper, we show evidences that the lepidopteran cenpB gene has evolved from domestication of a transposase. Furthermore, the Sf CENP-B nuclear location and its ability to bind to a retrotransposon derived sequence in vivo argue in favor of a functional homology to CENP-B proteins.  相似文献   

20.
CENP-B is a centromere associated protein originally identified in human cells as an 80 kDa autoantigen recognized by sera from patients with anti-centromere antibodies (ACA). Recent evidence indicates that CENP-B interacts with centromeric heterochromatin in human chromosomes and may bind to a specific subset of human alphoid satellite DNA. CENP-B has not been unambiguously identified in non-primates and could, in principal, be a primate-specific alphoid DNA binding protein. In this work, a human genomic DNA segment containing the CENP-B gene was isolated and subjected to DNA sequence analysis. In vitro expression identified the site for translation initiation of CENP-B, demonstrating that it is encoded by an intronless open reading frame (ORF) in human DNA. A homologous mouse gene was also isolated and characterized. It was found to possess a high degree of homology with the human gene, containing an intronless ORF coding for a 599 residue polypeptide with 96% sequence similarity to human CENP-B. 5 and 3 flanking and untranslated sequences were conserved at a level of 94.6% and 82.7%, respectively, suggesting that the regulatory properties of CENP-B may be conserved as well. CENP-B mRNA was detected in mouse cells and tissues and an immunoreactive nuclear protein identical in size to human CENP-B was detected in mouse 3T3 cells using human ACA. Analysis of the sequence of CENP-B revealed a segment of significant similarity to a DNA binding motif identified for the helix-loop-helix (HLH) family of DNA binding proteins. These data demonstrate that CENP-B is a highly conserved mammalian protein that may be a member of the HLH protein family and suggest that it plays a role in a conserved aspect of centromere structure or function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号