首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach to understand vines (Vitis vinifera) defense mechanism against heavy metal stress by isolation and determination of Hg-phytochelatins (PCs) complexes was performed. PCs are important molecules involved in the control of metal concentration in plants. PCs complex toxic metals through ?SH groups and stores them inside cells vacuole avoiding any toxic effect of free metals in the cytosol. The Hg-PCs identification was achieved by determination of Hg and S as hetero-tagged atoms. A method involving two-dimensional chromatographic analysis coupled to atomic spectrometry and confirmation by tandem mass spectrometry is proposed. An approach involving size exclusion chromatography coupled to inductively coupled plasma mass spectrometry on roots, stems, and leaves extracts describing Hg distribution according to molecular weight and sulfur associations is proposed for the first time. Medium–low molecular weight Hg–S associations of 29–100 kDa were found, suggesting PCs presence. A second approach employing reversed-phase chromatography coupled to atomic fluorescence spectrometry analysis allowed the determination of Hg-PCs complexes within the mentioned fractions. Chromatograms showed Hg-PC2, Hg-PC3 and Hg-PC4 presence only in roots. Hg-PCs presence in roots was confirmed by ESI–MS/MS analysis.  相似文献   

2.
BackgroundHuman biomonitoring studies of trace elements in biological fluids are mostly limited to a certain number of elements or biological materials. In this study, we describe the significant extension of a biomonitoring to 73 elements being present in concentration ranges from ng/L to g/L in clinically relevant specimens such as blood, serum, erythrocytes and urine.MethodsThe samples were collected from 102 occupationally non-exposed inhabitants of northern Germany. The elements were determined either by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) in the low concentration range or by inductively coupled plasma optical emission spectrometry (ICP-OES) for essential trace elements and electrolytes.ResultsMean values and selected percentiles of element concentrations are presented for all sample materials. From the results, we calculated the distribution of elements between plasma and blood cells. Application of ICP-MS/MS improves selectivity and accuracy in the determination of elements that are strongly spectrally interfered, such as Cr, Ge, Pd or Ti in blood samples.ConclusionsThis publication provides very valuable information for occupational or environmental hygienists, toxicologists and clinical chemists due to the particularly high number of determined elements and presented concentration ranges.  相似文献   

3.
The inorganic contents of bone, brain, erythrocyte, heart, kidney cortex, kidney medulla, liver, lung, muscle and plasma from spontaneously hypertensive rats were compared with those of the same tissues from healthy Sprague-Dawley rats. A general inductively coupled plasma-mass spectrometry method developed for multi-element determinations of most of the elements present in biological tissues was used. Variations were found not only for major elements, as expected, but also for many trace elements in several tissues.  相似文献   

4.
The concentrations of 55 elements in the millipede, Oxidus gracilis, soil and plant in the habitat were examined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). In all the millipedes, Ca concentration derived from calcium carbonate in the exoskeleton was the highest at average 94 μ/mg-weight. The other major elements were the following: Mg, K, Na, Zn, Fe, Al, Cu, Sr, Ba, Mn and Ti (> 1 ng/mg-body weight), whereas Se, Mo, Ag, Cd, Co, Li and Ce etc. were in trace levels. Interestingly, the various 15 elements such as Ca, Na, Zn, Al, Ba, Ga, Ag, Cd, Co and Y in environmental habitats were well reflected in the body of the millipede. Although the heavy metal contents, in the order of Cu>Pb>Cd, were similar to those of other invertebrates, Cu in the millipede was remarkably high concentration. Zn was maintained in a range of 72–394 ng/mg-weight as essential element in the body and no difference was found in the sexes. The C1 chondrite normalization pattern for lanthanoid series elements in the millipede, soil and plant indicated that the environmental habitats were well protected from pollution. These characteristics of internal elements and metal accumulation in the millipede or relation to their habitats would be useful information for the environmental pollution studies.  相似文献   

5.
Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering.  相似文献   

6.
The concentrations of 26 major to trace elements in rat kidneys aging from 5 to 113 weeks old were determined. The rats investigated were the same rats used previously reported to have 29 elements in bones (femurs). The samples were decomposed by high purity nitric acid and hydrogen peroxide. Eight elements (Na, Mg, Si, P, K, Ca, Fe and Zn) were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and 18 elements (Mn, Co, Ni, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Tl, Pb, Bi and U) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The aging effects on the concentrations of these elements and mutual elemental relationships were investigated. Analysis of variance (ANOVA) for age variations indicated that the concentrations of P, K, Mn and Mo were almost constant across the age of rats (p > 0.3). The concentration of many elements such as Na, Mg, Ca, Fe, Co, Cu, Zn, As, Se, Cd, Sn, Sb, Tl, Pb and Bi, showed significant increasing trends (p < 0.01) with different patterns. Rubidium, Cs, Pb and Bi showed significant age variations but not monotonic trends. Silicon, Ni, Sr, Ba and U showed large concentration scatterings without any significant trends (p > 0.01). The metabolism of these elements may not be well established in the kidney. Many toxic elements such as As, Cd, Sn, Pb and Bi showed a narrow concentration range among age-matched rats. The kidney may have established metabolic mechanisms to confine or accumulate these toxic elements even though their concentrations are very low (e.g., 10 ng g?1 of Cd). These elements also closely coupled with Fe. A cluster analysis was performed using an elemental correlation matrix and indicated that these elements, including Fe, formed a cluster. However, another cluster analysis using “an aging effect eliminated” elemental correlation showed different clustering in which the Fe, Cd cluster disappeared.  相似文献   

7.
Sabbioni  E.  Nicolaou  G. R.  Pietra  R.  Beccaloni  E.  Coni  E.  Alimonti  A.  Caroli  S. 《Biological trace element research》1990,26(1):757-768

An investigation was undertaken in order to assess the performance of neutron activation analysis and inductively coupled plasma atomic emission spectrometry techniques for determining reference values for minor and trace elements in human lungs of urban subjects. Results show that in both instances experimental conditions must be carefully optimized to guarantee reliability of experimental data. Strict criteria for tissue sampling and pretreatment also had to be set. Provisional reference values for ca. 50 elements could thus be established.

  相似文献   

8.
United States Pharmacopeia updated its 100 years old metal analysis method with inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES). These sensitive instruments require that sample preparation be at least as sophisticated as the instrumentation used in the analysis. Sample contamination during sample preparation has to be controlled to an acceptable level given the low detection limit of these instruments and the ubiquitous presence of elements. This article focused on sample contamination during sample preparation. Contaminations from environment, reagents, and lab apparatus were investigated for their impact on trace element analysis. Advice on clean lab practice was offered to the pharmaceutical industry in regard to contamination control in elemental analysis labs at a time when the industry is preparing for compliance with elemental impurities in drug products.  相似文献   

9.
The concentrations of 22 major and trace elements in livers from rats aging from 5 to 113 weeks old were determined. The rats investigated were the same rats previously reported with respect to 29 elements in bones (femur) and 26 elements in kidneys. The samples were decomposed with high-purity nitric acid and hydrogen peroxide. Seven elements (Na, Mg, P, K, Ca, Fe and Zn) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), and 15 elements (Mn, Co, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Pb and Bi) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of variance (ANOVA) for age variations indicated that the concentrations of many elements, such as Mg, P, K, Mn, Fe, Cu, Zn, Sr, Mo and Cd, were almost constant across the ages of the rats with the exception of 5 weeks old (p > 0.05). Arsenic, Pb and Bi showed significant increasing trends, while Na and Co showed decreasing trends (p < 0.01). Selenium showed a decreasing trend except at the initial stage of 5–9 weeks old. Calcium, Rb, Sn, Sb, Cs and Ba showed significant age-related variations, but their patterns were not monotonic. The liver clearly contrasts with the kidneys, in which many elements showed significant age-related variations with increasing trends. The concentration ranges of Mg, P, K, Mn, Cu, Zn, and Mo were controlled within 15% across all ages of rats. The homeostasis of the aforementioned elements may be well established in the liver. The toxic elements, such as Cd, Pb and Bi, showed a narrow concentration range among age-matched rats.  相似文献   

10.
Heavy metal contaminations in the environment of mining area have become a global problem. The vicinity of an iron ore mine was investigated to estimate the concentrations of As, Pb, Cd, Mn, Ni, Zn, and Cr in the soil and the feasibility of using native plants for phytoremediation. For this, concentrations of elements in soil samples collected and were analyzed by inductivity coupled plasma optical emission spectrometry. The concentrations of heavy metals and arsenic in the roots and aerial parts of Dactylis glomerata L. and Scleranthus orientalis Rössler were analyzed by inductively coupled plasma mass spectrometer too. As concentrations in the samples surpassed the soil toxicity threshold. Cd concentration in soil samples was considerably high next to mine pit. Neither species was identified as a hyperaccumulator, but both species could be considered as excluder plants for As.  相似文献   

11.
Introduction – To ensure food safety, accurate knowledge of the levels of several trace elements is necessary. This is also true for natural products of plants and resins used for human consumption or therapeutic treatment, like the mastic gum of Pistacia lentiscus. The rapid analysis of gum and resin matrices is a challenge because there are problems with the decomposition of such complicated matrices. Objective – To develop an efficient multielemental analytical method for the determination of trace elements and to compare different procedures for analyte extraction when microwave‐assisted digestion is applied. Methodology – The inductively coupled plasma atomic emission spectrometric (ICP‐AES) technique was applied and the optimum ICP conditions like radiofrequency power, argon flow rate and nebuliser sample uptake flowrate were found. The microwave‐assisted procedure was compared with that with conventional heating. Since mastic and resinous materials are difficult for dissolution and extraction of trace element, influential acid mixtures containing hydrofluoric acid proved to be capable of quantitative extraction of the analytes. Results – The digestion of mastic resin or similar matrices is significantly facilitated by using microwave radiation instead of conventional heating since the obtained recovery for several analytes is much higher. It was proved that the acid mixture of HCl–HNO3–HF was the most efficient for complete sample digestion and recovery of the analytes. Conclusions The performance characteristics of the developed method were evaluated against certified reference material and the method was proved reliable and applicable to the analysis of mastic gum and possibly to similar resinous matrices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A quick and reliable method for the evaluation and classification of two types of tissues is presented. Several chemometric methods were applied to evaluate multivariate data of the tissue samples with respect to the content of trace elements. The content of Pb, Al, Zn, Cd, Cu, Ni and Co was determined in samples of healthy and cancerous tissue obtained from 26 patients. Determination was done at milligram/kilogram level with inductively coupled plasma optical emission spectrometry (ICP-OES) and atomic absorption spectroscopy (AAS) techniques. Contents of trace metals in studied tissues are not normally distributed; however, normal distribution was confirmed for log values. There is a statistically significant difference in the content of Zn, Cd, Cu and Al (p?<?0.01) and Ni and Co (p?<?0.05) when healthy tissue is compared to cancerous one. Correlation between contents of trace elements for studied tissues was positive; the highest was found between Zn and Cu. A chemometric methodology seems to be a promising tool for classifications of the tissue samples.  相似文献   

13.
The genus Streptanthus Nutt. is one of the most important indicators of ultramafic floras in western North America. This genus contains taxa that are endemic or tolerant of ultramafic soils. Streptanthus polygaloides is an annual nickel hyperaccumulator strictly confined to ultramafic soils throughout the Californian Sierra Nevada foothills. Nickel concentration in S. polygaloides populations was evaluated by elemental microanalysis using inductively coupled plasma mass spectrometry (ICP-MS). Representative samples of S. polygaloides roots, stems, leaves, flowers, and fruits were studied by scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray probe (SEM-EDX). Results show Ni accumulation values between 0.09 and 1.18 %, and a distribution pattern similar to that observed in other Ni hyperaccumulator taxa, with the leaf epidermis accumulating the largest concentrations.  相似文献   

14.
The merits of radiochemical neutron activation analysis (RNAA) and inductively coupled plasma mass spectrometry (ICP-MS) are critically discussed for the determination of trace and ultratrace elements in normal human serum. For RNAA, two semiautomated procedures, allowing the determination of up to 18 elements, are briefly described. ICP-MS has a series of interesting features for the determination of trace elements. Matrix and spectral interferences can mostly be avoided or corrected for. After a simple 5- or 10-fold dilution and addition of an internal standard, more than 20 elements can be measured precisely and accurately.  相似文献   

15.
In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. The biodiversity that exists within a species can be utilized to investigate how regulatory mechanisms of individual elements interact and to identify genes important for these processes. We analyzed the elemental composition (ionome) of a set of 96 wild accessions of the genetic model plant Arabidopsis thaliana grown in hydroponic culture and soil using inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of 17-19 elements were analyzed in roots and leaves from plants grown hydroponically, and leaves and seeds from plants grown in artificial soil. Significant genetic effects were detected for almost every element analyzed. We observed very few correlations between the elemental composition of the leaves and either the roots or seeds. There were many pairs of elements that were significantly correlated with each other within a tissue, but almost none of these pairs were consistently correlated across tissues and growth conditions, a phenomenon observed in several previous studies. These results suggest that the ionome of a plant tissue is variable, yet tightly controlled by genes and gene × environment interactions. The dataset provides a valuable resource for mapping studies to identify genes regulating elemental accumulation. All of the ionomic data is available at www.ionomicshub.org.  相似文献   

16.
This study aims to investigate the relationship between serum macro- and trace element contents and the degree of disk degeneration in patients with intervertebral disk herniation (IDH). This study was carried out on 69 subjects (30 women and 39 men) diagnosed with IDH. Blood samples of the subjects were collected, and serum concentrations of the elements that include macroelements, such as calcium, phosphorus, potassium, sodium, and magnesium, and trace elements, such as zinc, iron, copper, and selenium, were determined using inductively coupled plasma–atomic emission spectrometry. Magnetic resonance imaging (MRI) examination of the entire lumbar region of the vertebral column was conducted using a 1.5-T MRI scanner. The degree of disk degeneration was classified into three categories. Correlation analysis between the degree of disk degeneration and the serum element was performed using SPSS 16.0. In the correlation analysis between the degree of disk degeneration and the element contents, only calcium was found to be negatively correlated with the degree of disk degeneration (r?=??0.332, P?<?0.01). Comparison results between male and female groups showed no significant difference in the element content and in the degree of disk degeneration (P?>?0.05). Moreover, the serum calcium content showed a significant correlation with the degree of disk degeneration, suggesting that the serum calcium concentration can be used as an indicator of intervertebral disk degeneration prognosis.  相似文献   

17.
Metals are essential for protein function as cofactors to catalyze chemical reactions. Disruption of metal homeostasis is implicated in a number of diseases including Alzheimer''s and Parkinson''s disease, but the exact role these metals play is yet to be fully elucidated. Identification of metalloproteins encounters many challenges and difficulties. Here we report an approach that allows metalloproteins in complex samples to be quantified. This is achieved using size exclusion chromatography coupled with inductively coupled plasma - mass spectrometry (SEC-ICP-MS). Using six known metalloproteins, the size exclusion column can be calibrated and the respective trace elements (iron, copper, zinc, cobalt, iodine) can be used for quantification. SEC-ICP-MS traces of human brain and plasma are presented. The use of these metalloprotein standards provides the means to quantitatively compare metalloprotein abundances between biological samples. This technique is poised to help shed light on the role of metalloproteins in neurodegenerative disease as well as other diseases where imbalances in trace elements are implicated.  相似文献   

18.
19.
Despite the nutritional value of Colophospermum mopane to browser's diets, there is still insufficient knowledge on the effect of browsers on concentrations of these trace elements. A field experiment was conducted in Musina Nature Reserve, Limpopo Province, South Africa, to determine the effect of pruning on the concentration of trace elements in mopane leaves. Samples were analysed for iron (Fe), manganese (Mn), boron (B), molybdenum (Mo), copper (Cu), zinc (Zn), cobalt (Co), fluoride (F) and selenium (Se) using the inductively coupled plasma atomic emission spectrometry technique. The effect of pruning was tested using the two‐tailed t‐test: two‐sample assuming equal variance and two‐tailed Mann–Whitney U‐test. Results showed that the concentration of trace elements in the control and pruned trees varies slightly through the year. Fe, Mn, Mo, Cu, Zn and Se are higher during leaf flush, but declined as the leaves matured and aged. This study concluded that simulated browsing had no significant effect on the concentration of trace elements in the mopane leaves. Seasonal variation in the amount of trace elements has implications on the distribution of browsers in the mopane woodland.  相似文献   

20.
Statolith trace elemental concentrations can be used as natural tracers to better understand life history and stock structure of squid. A highly variable Humboldt squid population was targeted to determine if ontogenic patterns could be revealed and to compare variations among squid collected from three geographic areas. Statoliths from Humboldt squid collected off Westport, WA; Oceanside, CA; and the Galapagos Islands were sampled for ten trace elements using laser ablation inductively coupled plasma mass spectrometry. Similar patterns were found for some elements despite geographic collection site distances indicating a potential to explain ontogenic shifts experienced by this species. Other elements displayed high variation in spatial pattern, which suggests the potential to distinguish among the squid collected from the three geographic regions and better understand stock structure. Within the California and Washington squid, eight of the elements varied in relation to calcium across the statolith with only yttrium and zirconium remaining statistically invariant. In addition to these two elements, copper and zinc also did not vary significantly across the statoliths collected from Galapagos squid. All elements demonstrate potential to influence a multivariate elemental fingerprint, which may provide a useful measure of population discrimination needed for stock assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号