首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the Cu transporter (Ctr) family have been reported to be part of the copper uptake machinery in several organisms. Recently it has been suggested that human Ctr1 (hCtr1) may act as a copper transporter in several tissues including the intestine. hCtr1 is a 190 amino acid protein and is predicted to have three transmembrane-spanning domains and exist in the plasma membrane as a homo-trimer. Ctr1-transfected cell lines exhibit saturable, pH-dependent Cu(I) uptake indicating a role in copper transport. Recent studies with Ctr1 knockout mice have highlighted an essential function in mammalian embryonic development since homozygous mutants die in utero. Heterozygotes are indistinguishable from wild-type littermates but have a severely reduced brain copper content, suggesting that Ctr1 is a key component of the copper uptake pathway in the brain. However, its role in other tissues remains elusive.  相似文献   

2.
Copper is an essential trace element that functions in a diverse array of biochemical processes that include mitochondrial respiration, neurotransmitter biogenesis, connective tissue maturation, and reactive oxygen chemistry. The Ctr1 protein is a high-affinity Cu+ importer that is structurally and functionally conserved in yeast, plants, fruit flies, and humans and that, in all of these organisms, is localized to the plasma membrane and intracellular vesicles. Although intestinal epithelial cell-specific deletion of Ctr1 in mice demonstrated a critical role for Ctr1 in dietary copper absorption, some controversy exists over the localization of Ctr1 in intestinal epithelial cells in vivo. In this work, we assess the localization of Ctr1 in intestinal epithelial cells through two independent mechanisms. Using immunohistochemistry, we demonstrate that Ctr1 localizes to the apical membrane in intestinal epithelial cells of the mouse, rat, and pig. Moreover, biotinylation of intestinal luminal proteins from mice fed a control or a copper-deficient diet showed elevated levels of both total and apical membrane Ctr1 protein in response to transient dietary copper limitation. Experiments in cultured HEK293T cells demonstrated that alterations in the levels of the glycosylated form of Ctr1 in response to copper availability were a time-dependent, copper-specific posttranslational response. Taken together, these results demonstrate apical localization of Ctr1 in intestinal epithelia across three mammalian species and suggest that increased Ctr1 apical localization in response to dietary copper limitation may represent an adaptive response to homeostatically modulate Ctr1 availability at the site of intestinal copper absorption.  相似文献   

3.
Silver is a non-essential, toxic metal. The use of silver as an antimicrobial agent in many applications and its presence as a contaminant in foods and air can lead to accumulation in tissues. Despite its widespread use, the systems involved in the uptake of silver into mammalian cells are presently unknown. Previous studies have shown that copper uptake at the plasma membrane by copper transporter 1 (Ctr1) is inhibited by an excess of silver, suggesting that Ctr1 may function in importing silver into cells. In this study we examined directly the role of Ctr1 in the accumulation of silver in mammalian cells using over-expression experiments and mouse embryonic fibroblast cells lacking Ctr1. COS-7 cells transfected to express a human Ctr1-green fluorescent protein (hCtr1-GFP) fusion protein hyper-accumulated silver when incubated in medium supplemented with low micromolar concentrations (2.5–10 μmol/L) of AgNO3. An hCtr1-GFPM150L,M154L variant deficient for copper transport failed to stimulate accumulation of silver. Mouse embryonic fibroblast cells lacking Ctr1 showed approximately a 50% reduction in silver content when incubated in silver-supplemented medium compared to a wild-type isogenic cell line. Collectively, these data demonstrate that Ctr1 transports both copper and silver and suggest that Ctr1 is an important transport protein in the accumulation of silver in mammalian cells.  相似文献   

4.
Ctr1 (copper transporter 1) mediates high-affinity copper uptake. Ctr2 (copper transporter 2) shares sequence similarity with Ctr1, yet its function in mammalian cells is poorly understood. In African green monkey kidney COS-7 cells and rat tissues, Ctr2 migrated as a predominant band of approximately 70 kDa and was most abundantly expressed in placenta and heart. A transiently expressed hCtr2-GFP (human Ctr2-green fluorescent protein) fusion protein and the endogenous Ctr2 in COS-7 cells were mainly localized to the outer membrane of cytoplasmic vesicles, but were also detected at the plasma membrane. Biotinylation of Ctr2 with the membrane-impermeant reagent sulfo-NHS-SS-biotin [sulfosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate] confirmed localization at the cell surface. Cells expressing hCtr2-GFP hyperaccumulated copper when incubated in medium supplemented with 10 microM CuSO(4), whereas cells depleted of endogenous Ctr2 by siRNAs (small interfering RNAs) accumulated lower levels of copper. hCtr2-GFP expression did not affect copper efflux, suggesting that hCtr2-GFP increased cellular copper concentrations by promoting uptake at the cell surface. Kinetic analyses showed that hCtr2-GFP stimulated saturable copper uptake with a K(m) of 11.0+/-2.5 microM and a K(0.5) of 6.9+/-0.7 microM when data were fitted to a rectangular hyperbola or Hill equation respectively. Competition experiments revealed that silver completely inhibited hCtr2-GFP-dependent copper uptake, whereas zinc, iron and manganese had no effect on uptake. Furthermore, increased copper concentrations in hCtr2-GFP-expressing cells were inversely correlated with copper chaperone for Cu/Zn superoxide dismutase protein expression. Collectively, these results suggest that Ctr2 promotes copper uptake at the plasma membrane and plays a role in regulating copper levels in COS-7 cells.  相似文献   

5.
Nose Y  Kim BE  Thiele DJ 《Cell metabolism》2006,4(3):235-244
The trace element copper (Cu) is a cofactor for biochemical functions ranging from energy generation to iron (Fe) acquisition, angiogenesis, and free radical detoxification. While Cu is essential for life, the molecules that mediate dietary Cu uptake have not been identified. Ctr1 is a homotrimeric protein, conserved from yeast to humans, that transports Cu across the plasma membrane with high affinity and specificity. Here we describe the generation of intestinal epithelial cell-specific Ctr1 knockout mice. These mice exhibit striking neonatal defects in Cu accumulation in peripheral tissues, hepatic Fe overload, cardiac hypertrophy, and severe growth and viability defects. Consistent with an intestinal Cu absorption block, the growth and viability defects can be partially rescued by a single postnatal Cu administration, indicative of a critical neonatal metabolic requirement for Cu that is provided by intestinal Ctr1. These studies identify Ctr1 as the major factor driving intestinal Cu absorption in mammals.  相似文献   

6.
Copper is an essential trace metal whose biological utility is derived from its ability to cycle between oxidized Cu(II) and reduced Cu(I). Ctr1 is a high affinity plasma membrane copper permease, conserved from yeast to humans, that mediates the physiological uptake of Cu(I) from the extracellular environment. In the baker's yeast Saccharomyces cerevisiae, extracellular Cu(II) is reduced to Cu(I) via the action of the cell surface metalloreductase Fre1, similar to the human gp91(phox) subunit of the NADPH oxidase complex, which utilizes heme and flavins to catalyze electron transfer. The S. cerevisiae Ctr2 protein is structurally similar to Ctr1, localizes to the vacuole membrane, and mobilizes vacuolar copper stores to the cytosol via a mechanism that is not well understood. Here we show that Ctr2-1, a mutant form of Ctr2 that mislocalizes to the plasma membrane, requires the Fre1 plasma membrane metalloreductase for Cu(I) import. The conserved methionine residues that are essential for Ctr1 function at the plasma membrane are also essential for Ctr2-1-mediated Cu(I) uptake. We demonstrate that Fre6, a member of the yeast Fre1 metalloreductase protein family, resides on the vacuole membrane and functions in Ctr2-mediated vacuolar copper export, and cells lacking Fre6 phenocopy the Cu-deficient growth defect of ctr2Delta cells. Furthermore, both CTR2 and FRE6 mRNA levels are regulated by iron availability. Taken together these studies suggest that copper movement across intracellular membranes is mechanistically similar to that at the plasma membrane. This work provides a model for communication between the extracellular Cu(I) uptake and the intracellular Cu(I) mobilization machinery.  相似文献   

7.
8.
Meiosis requires copper to undertake its program in which haploid gametes are produced from diploid precursor cells. In Schizosaccharomyces pombe, copper is transported by three members of the copper transporter (Ctr) family, namely Ctr4, Ctr5, and Ctr6. Although central for sexual differentiation, very little is known about the expression profile, cellular localization, and physiological contribution of the Ctr proteins during meiosis. Analysis of gene expression of ctr4+ and ctr5+ revealed that they are primarily expressed in early meiosis under low copper conditions. In the case of ctr6+, its expression is broader, being detected throughout the entire meiotic process with an increase during middle- and late-phase meiosis. Whereas the expression of ctr4+ and ctr5+ is exclusively dependent on the presence of Cuf1, ctr6+ gene expression relies on two distinct regulators, Cuf1 and Mei4. Ctr4 and Ctr5 proteins co-localize at the plasma membrane shortly after meiotic induction, whereas Ctr6 is located on the membrane of vacuoles. After meiotic divisions, Ctr4 and Ctr5 disappear from the cell surface, whereas Ctr6 undergoes an intracellular re-location to co-localize with the forespore membrane. Under copper-limiting conditions, disruption of ctr4+ and ctr6+ results in altered SOD1 activity, whereas these mutant cells exhibit substantially decreased levels of CAO activity mostly in early- and middle-phase meiosis. Collectively, these results emphasize the notion that Ctr proteins exhibit differential expression, localization, and contribution in delivering copper to SOD1 and Cao1 proteins during meiosis.  相似文献   

9.
10.
Copper is essential for biological processes such as free radical detoxification, mitochondrial respiration and iron metabolism. A central player in copper homeostasis is the high-affinity integral plasma membrane copper transporter Ctr1. However, the precise mechanisms by which Ctr1 functions are not known. Here, we highlight an important breakthrough in our understanding of how Ctr1 facilitates Cu(I) movement across membranes: the publication of structural details for human Ctr1 obtained from 2D crystallography and electron microscopy.  相似文献   

11.
The Saccharomyces cerevisiae high-affinity copper transporter, Ctr1p, mediates cellular uptake of Cu(I). We report that when copper (50 microm CuSO(4)) is added to the growth medium of copper-starved cells, Ctr1p is rapidly internalized by endocytosis, delivered to the lumen of the lysosome-like vacuole and slowly degraded by vacuolar proteases. Through analysis of the trafficking and degradation of Ctr1p mutants, two lysine residues in the C-terminal cytoplasmic tail of Ctr1p, Lys340 and Lys345, were found to be critical for copper-dependent endocytosis and degradation. In response to copper addition, Ctr1p was found to be ubiquitylated and a mutation in the Rsp5 ubiquitin ligase largely abolished ubiquitylation, endocytosis and degradation. In a strain lacking the Rsp5p accessory factors Bul1p and Bul2p, endocytosis and degradation of Ctr1p-green fluorescent protein were substantially diminished. Surprisingly, a Ctr1p mutant that lacks Lys340 and Lys345 was still ubiquitylated in a copper-dependent manner, indicating that ubiquitylation of Ctr1p on other sites is insufficient to drive copper-dependent endocytosis and degradation. This study demonstrates that copper regulates turnover of Ctr1p by stimulating Rsp5p-dependent endocytosis and degradation of Ctr1p in the vacuole.  相似文献   

12.
Copper is an essential trace element required by all aerobic organisms as a cofactor for enzymes involved in normal growth, development, and physiology. Ctr1 proteins are members of a highly conserved family of copper importers responsible for copper uptake across the plasma membrane. Mice lacking Ctr1 die during embryogenesis from widespread developmental defects, demonstrating the need for adequate copper acquisition in the development of metazoan organisms via as yet uncharacterized mechanisms. Whereas the fruit fly, Drosophila melanogaster, expresses three Ctr1 genes, ctr1A, ctr1B, and ctr1C, little is known about their protein isoform-specific roles. Previous studies demonstrated that Ctr1B localizes to the plasma membrane and is not essential for development unless flies are severely copper-deficient or are subjected to copper toxicity. Here we demonstrate that Ctr1A also resides on the plasma membrane and is the primary Drosophila copper transporter. Loss of Ctr1A results in copper-remedial developmental arrest at early larval stages. Ctr1A mutants are deficient in the activity of copper-dependent enzymes, including cytochrome c oxidase and tyrosinase. Amidation of Phe-Met-Arg-Phe-amides, a group of cardiomodulatory neuropeptide hormones that are matured via the action of peptidylglycine alpha-hydroxylating monooxygenase, is defective in neuroendocrine cells of Ctr1A mutant larvae. Moreover, both the Phe-Met-Arg-Phe-amide maturation and heart beat rate defects observed in Ctr1A mutant larvae can be partially rescued by exogenous copper. These studies establish clear physiological distinctions between two Drosophila plasma membrane copper transport proteins and demonstrate that copper import by Ctr1A is required to drive neuropeptide maturation during normal growth and development.  相似文献   

13.
The trace metal copper is an essential cofactor for a number of enzymes that have critical roles in biological processes, but it is highly toxic when allowed to accumulate in excess of cellular needs. Consequently, homeostatic copper metabolism is maintained by molecules involved in copper uptake, distribution, excretion, and incorporation into copper-requiring enzymes. Previously, we reported that overexpression of the human or mouse Ctr1 copper transporter stimulates copper uptake in mammalian cells, and deletion of one Ctr1 allele in mice gives rise to tissue-specific defects in copper accumulation and in the activities of copper-dependent enzymes. To investigate the physiological roles for mammalian Ctr1 protein in cellular copper metabolism, we characterized wild type, Ctr1 heterozygous, and Ctr1 homozygous knock-out cells isolated from embryos obtained by the inter-cross of Ctr1 heterozygous mice. Ctr1-deficient mouse embryonic cells are viable but exhibit significant defects in copper uptake and accumulation and in copper-dependent enzyme activities. Interestingly, Ctr1-deficient cells exhibit approximately 30% residual copper transport activity that is saturable, with a K(m) of approximately 10 microm, with biochemical features distinct from that of Ctr1. These observations demonstrate that, although Ctr1 is critical for both cellular copper uptake and embryonic development, mammals possess additional biochemically distinct functional copper transport activities.  相似文献   

14.
15.
Living organisms have evolved intricate systems to harvest trace elements from the environment, to control their intracellular levels, and to ensure adequate delivery to the various organs and cellular compartments. Copper is one of these trace elements. It is at the same time essential for life but also highly toxic, not least because it facilitates the generation of reactive oxygen species. In mammals, copper uptake in the intestine and copper delivery into other organs are mediated by the copper importer Ctr1. Drosophila has three Ctr1 homologs: Ctr1A, Ctr1B, and Ctr1C. Earlier work has shown that Ctr1A is an essential gene that is ubiquitously expressed throughout development, whereas Ctr1B is responsible for efficient copper uptake in the intestine. Here, we characterize the function of Ctr1C and show that it functions as a copper importer in the male germline, specifically in maturing spermatocytes and mature sperm. We further demonstrate that loss of Ctr1C in a Ctr1B mutant background results in progressive loss of male fertility that can be rescued by copper supplementation to the food. These findings hint at a link between copper and male fertility, which might also explain the high Ctr1 expression in mature mammalian spermatozoa. In both mammals and Drosophila, the X chromosome is known to be inactivated in the male germline. In accordance with such a scenario, we provide evidence that in Drosophila, the autosomal Ctr1C gene originated as a retrogene copy of the X-linked Ctr1A, thus maintaining copper delivery during male spermatogenesis.  相似文献   

16.
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer’s disease. However, its physiological function remains elusive. Cu2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu2+ reduction and 64Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu2+ ions. Moreover, wild-type cells exposed to both Cu2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu2+ reductase activity and increased 64Cu uptake. We conclude that Cu2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.  相似文献   

17.
18.
19.
Distinct mechanisms for Ctr1-mediated copper and cisplatin transport   总被引:3,自引:0,他引:3  
The Ctr1 family of integral membrane proteins is necessary for high affinity copper uptake in eukaryotes. Ctr1 is also involved in cellular accumulation of cisplatin, a platinum-based anticancer drug. Although the physiological role of Ctr1 has been revealed, the mechanism of action of Ctr1 remains to be elucidated. To gain a better understanding of Ctr1-mediated copper and cisplatin transport, we have monitored molecular dynamics and transport activities of yeast Saccharomyces cerevisiae Ctr1 and its mutant alleles. Co-expression of functional Ctr1 monomers fused with either cyan or yellow fluorescent protein resulted in fluorescence resonance energy transfer (FRET), which is consistent with multimer assembly of Ctr1. Copper near the K(m) value of Ctr1 enhanced FRET in a manner that correlated with cellular copper transport. In vitro cross-linking of Ctr1 confirmed that copper-induced FRET reflects conformational changes within pre-existing Ctr1 complexes. FRET assays in membrane-disrupted cells and protein extracts showed that intact cell structure is necessary for Ctr1 activity. Despite Ctr1-dependent cellular accumulation, cisplatin did not change Ctr1 FRET nor did it attenuate copper-induced FRET. A Ctr1 allele defective in copper transport enhanced cellular cisplatin accumulation. N-terminal methionine-rich motifs that are dispensable for copper transport play a critical role for cisplatin uptake. Taken together, our data reveal functional roles for structural remodeling of the Ctr1 multimeric complex in copper transport and suggest distinct mechanisms employed by Ctr1 for copper and cisplatin transport.  相似文献   

20.
The cell surface protein repertoire needs to be regulated in response to changes in the extracellular environment. In this study, we investigate protein turnover of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p, in response to a change in extra-cellular copper levels. As Ctr1p mediates high affinity uptake of copper into the cell, modulation of its expression is expected to be involved in copper homeostasis. We demonstrate that Ctr1p is a stable protein when cells are grown in low concentrations of copper, but that exposure of cells to high concentrations of copper (10 microM) triggers degradation of cell surface Ctr1p. This degradation appears to be specific for Ctr1p and does not occur with another yeast plasma membrane protein tested. Internalization of some Ctr1p can be seen when cells are exposed to copper. However, yeast mutant strains defective in endocytosis (end3, end4 and chc1-ts) and vacuolar degradation (pep4) exhibit copper-dependent Ctr1p degradation, indicating that internalization and delivery to the vacuole is not the principal mechanism responsible for degradation. In addition, a variant Ctr1p with a deletion in the cytosolic tail is not internalized upon exposure of cells to copper, but is nevertheless degraded. These observations indicate that proteolysis at the plasma membrane most likely explains copper-dependent turnover of Ctr1p and point to the existence of a novel pathway in yeast for plasma membrane protein turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号