首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of zinc deficiency and supplementation on plasma leptin levels were studied in Sprague-Dawley rats. After 6 wk on a zinc-deficient diet containing 0.65 ppm Zn/g, the mean body weight was significantly lower than that of normal or zinc-supplemented rats, which showed no difference among them. The plasma leptin and zinc levels were lowest in zinc-deficient animals and highest in those that received a normal diet and daily intraperitioneal injections of 3 mg Zn/kg. These results indicate that zinc deficiency leads to a significant inhibition in plasma leptin levels, whereas zinc supplementation significantly increases plasma leptin.  相似文献   

2.
The aim of the study was to investigate the effects of zinc deficiency and supplementation on lipid peroxidation and glutathione levels in blood and in some tissues of rats performing swimming exercise. Forty adult male Sprague-Dawley rats were divided into four groups: group 1, zinc-deficient consisted of swimming rats; group 2 consisted of zinc-supplemented swimming rats; groups 3 and 4 were the swimming and nonswimming controls, respectively. The levels of malondialdehyde and glutathione were measured after 4 wk of zinc-deficient or zinc-supplemented diet and 30 min of swimming exercise daily. The erythrocyte glutathione levels of groups 2 and 4 were significantly higher than those of groups 1 and 3 (p<0.01). The plasma malondialdehyde level of group 1 was significantly higher than all other groups. The glutathione levels in liver, kidney, striated muscle, and testes of group 2 were higher than in the other groups (p<0.01) and higher in kidney and striated muscle of group 3 than in groups 1 and 4 (p<0.01). The tissue malondialdehyde levels of striated muscle, liver, kidney, and testes of group 1 were significantly higher than for all other groups (p<0.01). Our findings suggest that both swimming exercise and zinc deficiency result in an increase of lipid peroxidation in tissues and that zinc supplementation prevents these alterations by the activation of the antioxidant system.  相似文献   

3.
The objective of this investigation was to evaluate the effect of 47 mg zinc supplementation on deficiency of zinc in rats during 98 d of restriction of motor activity (hypokinesia), which appeared by higher plasma zinc concentration. One Hundred 13-week-old Sprague-Dawley male rats weighing 360–390 g were used to perform the studies: They were equally divided into four groups: 1. Unsupplemented control animals (UCA); 2. Unsupplemented hypokinetic animals (UHA); 3. Supplemented control animals (SCA); and 4. Supplemented hypokinetic animals (SHA). For the simulation of the effect of hypokinesia (HK), the UHA and SHA were kept in small individual cages made of wood, which restricted their movements in all directions without hindering food and water intake. The SCA and SHA received daily with their food an additional amount of zinc. Before and during the experimental period of 98 d, plasma, urinary and fecal zinc, balance of zinc, food intake, and body weight were determined at different intervals. In the SHA and UHA, the concentration of zinc in plasma, and the elimination of zinc in urine and feces increased significantly when compared with the SCA and UCA, whereas the balance of zinc was negative. The body weight and food intake decreased significantly in the SHA and UHA when compared with the SCA and UCA. The increased plasma concentration of zinc in both the SHA and UHA groups was in contrast to the observed hypozincnemia during prolonged immobilization as during prolonged hospitalization. This reaction suggests that there may be some other mechanisms that are affecting the process of control and regulation of zinc metabolism during prolonged HK. It was concluded that exposure to prolonged restriction of motor activity of rats induces significant increases in plasma concentration, fecal and urinary elimination of zinc in the presence of negative zinc balance and regardless the daily intake of large amounts of zinc with their food, leading to zinc deficiency.  相似文献   

4.
In the study presented here, the effect of zinc deficiency on mRNA expression levels in liver and jejunum of adult rats was analyzed. Feed intake was restricted to 8 g/day. The semi-synthetic diet was fortified with pure phytate and contained either 2 μg Zn/g (Zn deficiency, n = 6) or 58 μg Zn/g (control, n = 7). After 29 days of Zn depletion feeding, entire jejunum and liver were retrieved and total RNA was extracted. Tissue specific expression pattern were screened and quantified by microarray analysis and verified individually via real-time RT-PCR. A relative quantification was performed with the newly developed Relative Expression Software Tool © on numerous candidate genes which showed a differential expression.

This study provides the first comparative view of gene expression regulation and fully quantitative expression analysis of 35 candidate genes in a non-growing Zn deficient adult rat model. The expression results indicate the existence of individual expression pattern in liver and jejunum and their tissue specific regulation under Zn deficiency. In addition, in jejunum a number of B-cell related genes could be demonstrated to be suppressed at Zn deficiency. In liver, metallothionein subtype 1 and 2 (MT-1 and MT-2) genes could be shown to be dramatically repressed and therefore represent putative markers for Zn deficiency. Expression results imply that some genes are expressed constitutively, whereas others are highly regulated in tissues responsible for Zn homeostasis.  相似文献   


5.
A gas chromatographic–mass spectrometric method for the simultaneous determination of methionine and total homocysteine in human plasma is described. dl-[2H4]Methionine and dl-[2H8]homocystine were used as internal standards. The method involved reduction of the disulfide bond with dithiothreitol, purification by cation-exchange chromatography using a BondElut SCX cartridge and derivatization with isobutyl chlorocarbonate in water–ethanol–pyridine. Quantitation was performed by selected-ion monitoring of the quasi-molecular ions of N(O,S)-isobutyloxycarbonyl ethyl ester (IBC-OEt) derivatives for methionine and [2H4]methionine, respectively, and the fragment ions ([M+H–COOisoBu–COOEt]+) for IBC-OEt derivatives for homocysteine and [2H4]homocysteine, respectively. The sensitivity, specificity, accuracy and precision of the method were demonstrated to be satisfactory for measuring concentrations of methionine and total homocysteine in human plasma.  相似文献   

6.
In rats, zinc deficiency has been reported to result in elevated hepatic methionine synthase activity and alterations in folate metabolism. We investigated the effect of zinc deficiency on plasma homocysteine concentrations and the distribution of hepatic folates. Weanling male rats were fed ad libitum a zinc-sufficient control diet (382.0 nmol zinc/g diet), a low-zinc diet (7.5 nmol zinc/g diet), or a control diet pair-fed to the intake of the zinc-deficient rats. After 6 weeks, the body weights of the zinc-deficient and pair-fed control groups were lower than those of controls, and plasma zinc concentrations were lowest in the zinc-deficient group. Plasma homocysteine concentrations in the zinc-deficient group (2.3 +/- 0.2 micromol/L) were significantly lower than those in the ad libitum-fed and pair-fed control groups (6.7 +/- 0.5 and 3.2 +/- 0.4 micromol/L, respectively). Hepatic methionine synthase activity in the zinc-deficient group was higher than in the other two groups. Low mean percentage of 5-methyltetrahydrofolate in total hepatic folates and low plasma folate concentration were observed in the zinc-deficient group compared with the ad libitum-fed and pair-fed control groups. The reduced plasma homocysteine and folate concentrations and reduced percentage of hepatic 5-methyltetrahydrofolate are probably secondary to the increased activity of hepatic methionine synthase in zinc deficiency.  相似文献   

7.
At physiological levels, zinc and various hormones affect each other reciprocally. Reduction in zinc levels in pinealectomized rats suggests the relation between zinc and melatonin. The effect of both zinc deficiency and supplementation on plasma melatonin levels in rats were investigated in this study. The study was done in Sel?uk University, Experimental Medicine Research and Application Center. Twenty-four adult male Sprague Dawley rats were divided into 3 groups. Eight rats were fed with zinc-deficient diet. Zinc supplementation was administered intaperitoneally to 8 rats. The remaining 8 rats were used as controls. All rats sacrificed 3 weeks later. Plasma melatonin and zinc levels were determined. The plasma zinc levels of the zinc-supplemented group were higher than those of the other groups as expected (P<0.01). Similarly, the melatonin levels in the zinc-supplemented group were higher than those in the other groups. A significant decrease was observed in melatonin levels of the zinc-deficient group compared to the control and zinc-supplemented group (P<0.01). The results of this study suggest that zinc deficiency decreases the melatonin levels and zinc supplementation may increase the plasma melatonin levels in rats.  相似文献   

8.
O'Dell et al. reported that rectal temperature was decreased by zinc deficiency in rats. However, it is not known whether a combined deficiency of zinc and iron affects rectal temperature. Forty 4-wk-old male Sprague-Dawley rats were assigned into four dietary treatment groups of 10 rats each for the 4-wk study: zinc-deficient group (4.5 mg Zn and 35 mg Fe/kg diet; −Zn), iron-deficient group (30 mg Zn/kg diet, no supplemental iron; −Fe), zinc/iron-deficient group (4.5 mg Zn/kg diet, no supplemental iron; −Zn−Fe), and control group (AIN-93G; Cont). At d 24–27, the rectal temperature was determined. The rectal temperature of the −Zn group was significantly lower than the Cont group. The rectal temperature of the −Zn−Fe group was similar to that of the Cont group, although thyroid-stimulating hormone and total thyroxin concentrations were the lowest in the −Zn−Fe group among all groups. The pattern of the plasma nitrate/nitrite concentrations across groups was similar to rectal temperature. Although observation of the rectal temperature is not conclusive, the balance between zinc and iron intake seems to determine the body temperature set point. These results suggest that the thermogenic effect of thyroid hormones is not throught to influence the paradoxical maintenance of rectal temperature in combined deficiency of zinc and iron.  相似文献   

9.
We have recently focused on the interaction between hyperhomocysteinemia, defined by high plasma homocysteine levels, and paraoxonase-1 expression and found a reduced activity of paraoxonase-1 associated with a reduced gene expression in the liver of cystathionine beta synthase (CBS) deficient mice, a murine model of hyperhomocysteinemia. As it has been demonstrated that polyphenolic compounds could modulate the expression level of the paraoxonase-1 gene in vitro, we have investigated the possible effect of flavonoid supplementation on the impaired paraoxonase-1 gene expression and activity induced by hyperhomocysteinemia and have evaluated the link with homocysteine metabolism. High-methionine diet significantly increased serum homocysteine levels, decreased hepatic CBS activity, and down-regulated paraoxonase-1 mRNA and its activity. However, chronic administration of catechin but not quercetin significantly reduced plasma homocysteine levels, attenuated the reduction of the hepatic CBS activity, and restored the decreased paraoxonase-1 gene expression and activity induced by chronic hyperhomocysteinemia. These data suggest that catechin could act on the homocysteine levels by increasing the rate of catabolism of homocysteine.  相似文献   

10.
This study aimed to investigate the possible changes in serum leptin concentration caused by acute exercise and the effects of zinc deficiency on these changes. Forty male rats were divided into control-control, control-elercise, zinc-deficient-control, and zinc-deficient-exercise groups (10 rats in each). Control-exercise and zinc-deficient-exercise groups performed exercisse at 6 m/min speed on a rodent treadmill for 60 min or until exhaustion. All rats were decapitated 48h after the exercise, and blood samples were collected to determine serum leptin and zinc levels. Serum leptin levels in the zinc-deficient-control group were lower than in the control-control group. The mean exercise time of control-exercise group was significantly longer than the zinc-deficient-exercise group. We conclude that serum leptin levels significantly decrease both 48 h after strenuous exercise and in the zinc-deficient rats, and there is a further decrease in leptin levels when rats fed on a zinc-deficient diet performed exercise.  相似文献   

11.
Zinc is essential for cell growth and is a co-factor for more than 300 enzymes, representing over 50 different enzyme classes. Two gene families have been identified involved in zinc homeostasis. ZnT transporters reduce intracellular zinc while ZIP transporters increase intracellular zinc. Previous studies have shown that zinc concentration in breast cancer tissues is higher than that in normal breast tissues. However, the mechanisms involved and the relations to zinc transporters are still unknown. A series of zinc transporters are characterized in this article and several of that are emphasized in view of their unique tissue-specific expressions. Established human breast cancer in a nude mice model is used. With a dietary zinc supplement treatment, ZnT-1 mRNA expression in established human breast cancer is raised by 24%, and is nearly 2 times of that in basal diet. ZIP1, ZIP2 and LIV-1 mRNA are the same between two treatment groups. Moreover, no significant changes of these zinc transporters expressions are found between differential breast cancer cell lines in the nude mice model. This is the first report, which detects the zinc transporters expressions in established human breast cancer in nude mice model. These results lead to the constitutive expression and response to zinc in different tissues. In addition to that, ZnT-1 seems to have played an important role in zinc homeostasis, even in breast cancer.  相似文献   

12.
13.
14.
The aim of this research was to investigate whether combined iron/zinc supplementation is more beneficial than iron supplementation alone from the perspective of the lipid profile in rats. The study was conducted on 6-week male Wistar rats in 3 stages: (1) 4-week adaptation to the diets: C (AIN-93M) and D (mineral mix without iron); (2) 4-week supplementation: 10-times more iron or iron and zinc compared to C; (3) 2-week post-supplementation period (the same diets as in the first stage). The iron and zinc content in serum was measured using ASA. Total cholesterol (TC), HDL cholesterol (HDL-C), non-HDL cholesterol (non-HDL-C) and triglycerides (TG) were determined. After 4-week supplementation (stage II) and post-supplementation (stage III) periods combined iron/zinc supplementation decreased HDL-C and increased non-HDL-C concentrations in control rats, and in contrast to iron supplementation alone TG concentration decreased. After stage II combined iron/zinc supplementation did not result in increased non-HDL-C and TG concentrations in iron deficient rats in contrast to iron supplementation alone. After stage III both iron and simultaneous iron/zinc supplementation were the cause of TC increase which was the result of the increase of non-HDL-C but not HDL-C concentration in iron deficient rats. In conclusion, there were no beneficial effects of simultaneous iron and zinc supplementation on the lipid profile of rats fed control and iron deficient diets. Combined iron and zinc supplementation may contribute to lower HDL-C and higher non-HDL-C concentrations.  相似文献   

15.
High cellular zinc concentrations lead to impairments in ATP synthesis and cell cycle control particularly in neurons and epithelial cells. The molecular basis for these dysfunctions is still not fully elucidated. Here we analyzed the effects of a high zinc exposure (10ppm) on gene and protein expression in the human epithelial cell line HT-29. Of the 1176 genes analyzed with cDNA arrays, nine differentially expressed genes were identified. Proteome analysis based on 1310 detected proteins identified 11 molecular targets. Most of the identified genes/proteins have not been linked to cellular zinc status before (e.g. PEC-60, R-ras3). More than half of the targets participate in ATP production or stress response. Therefore, it appears that higher zinc concentrations mediate their effects mainly via impairments in cellular energy metabolism and stress response.This work was in part supported by the Degussa Bio Actives GmbH, Freising-Weihenstephan, Germany.  相似文献   

16.
A study was conducted to determine the effect of high dietary zinc (Zn) oxide on trace element accumulation in various organs with special emphasis on the kidney. A total of 40 weaned piglets were allocated into two groups with 16 and 24 piglets each receiving a diet containing normal (NZn; 100 mg Zn/kg) or high (HZn; 2,100 mg Zn/kg) Zn concentration, respectively. After two weeks, eight piglets from each treatment were killed and organ samples were taken. Eight piglets from the remaining 16 pigs fed HZn diets were changed to NZn diets (CZn). All remaining piglets were killed after another two weeks for organ sampling. Trace element concentration was determined in the jejunum, liver, kidney, pancreas, bone (metacarpal IV), spleen, lung, thymus, tonsils and lymph nodes of jejunum, ileum and colon. Kidney mRNA expression of Zn transporter ZnT1 and ZIP4, genes involved in Cu metabolism (Ctr1, Atox1, SOD1, ATP7A, CCS, CP) and divalent metal ion transport (DMT1) and binding (MT-1a, MT-2b, MT-3) were determined. The Zn concentration in jejunum, liver, pancreas tissue and metacarpal IV was higher (P < 0.05) in HZn group compared with NZn and CZn groups. Trace element concentration in organs of CZn pigs was similar to those fed NZn diets. Zn concentration in muscle, lung and lymphatic organs as thymus, tonsils, spleen and lymph nodes of jejunum, ileum and colon did not differ between the groups. Zn and Cu were positively correlated (R = 0.67; P < 0.05) in the kidney. No significant differences for Cu chaperones, Cu transporters and Cu-dependent factors were determined despite decreased expression of Atox1 after two weeks and increased Ctr1 expression over time in the HZn group. Expression of MT-1a, MT-2b and MT-3 were significantly higher in HZn fed pigs with most pronounced effects for MT-1a > MT-2b > MT-3. Gene expression of MTs in pigs fed CZn diets did not differ from pigs fed NZn diets. The data suggest that high dietary Zn feeding in pigs leads to Cu co-accumulation in the kidney of pigs with minor effect on genes relevant for Cu metabolism. In addition, the organ Zn and Cu accumulation is reversible after two weeks of withdrawal of high dietary Zn.  相似文献   

17.
The effects of zinc and/or melatonin deficiencies on cellular immunity were investigated in rats infected with Toxoplasma gondii. A total of 50 adult male Sprague-Dawley rats were divided into 5 groups of 10 rats each. In group I, the rats were infected with T. gondii and fed a zinc-deficient diet; in group II, the rats were infected and their pineal gland was surgically removed. Group III included rats that were infected, pinealectomized, and fed a zinc-deficient diet. Group IV consisted of T. gondii-infested rats that received no treatment of any kind, and group V were normal controls. After 3 wk of treatment, all rats were sacrificed and the percentages of CD3, CD4, and CD8 lymphocytes, zinc, and melatonin levels in plasma and the percentage of lymphocyte in blood smears were analyzed. The CD3 ratios of groups I–III were significantly lower than those of groups IV and V (p<0.01). The CD4 lymphocytes were significantly higher in group IV than that in all other groups (p<0.05). In group IV, the CD8 lymphocytes were higher than in groups I–III (p<0.01) and those in group V were higher than for groups I and III (p<0.01). Lymphocyte incidence in group IV was higher than in the other four groups (p<0.01). The plasma zinc and plasma melatonin levels in groups I–III were significantly lower than those in the controls (p<0.01, both cases). These results suggest that zinc and/or melatonin deficiency have a negative influence on cellular immunity in rats with toxoplasmosis.  相似文献   

18.
19.
The usefulness of zinc transporter and metallothionein (MT) gene expressions to detect changes in zinc intake remains unclear. This pilot study aimed to determine the effects of zinc supplementation on zinc transporter and MT gene expressions in humans. Healthy adults (n = 39) were randomised to zinc treatment (ZT), receiving 22 mg Zn/day (n = 19), or no treatment (NT) (n = 20). Blood samples were collected on Days 0, 2, 7, 14, and 21. Plasma zinc and serum C-reactive protein concentrations were analysed. Gene expression of zinc transporters and MT in peripheral blood mononuclear cells was analysed using real-time PCR. Using repeated-measures ANOVA, MT-2A gene expression and fold change were found to be higher in the ZT group (P = 0.025 and P = 0.016, respectively) compared to the NT group, specifically at Day 2 (40 ± 18 % increase from baseline, P = 0.011), despite no significant increase in plasma zinc concentration. In a multiple regression model exploring the changes in gene expressions between Days 0 and 21, the change in MT-2A gene expression was correlated with changes in all zinc transporter expressions (r2 = 0.54, P = 0.029); the change in ZIP1 expression emerged as a univariate predictor (P = 0.003). Dietary zinc intake was predictive of zinc transporter and MT expressions (P = 0.030). Physical activity level was positively correlated with baseline ZIP7 expression (r = 0.36, P = 0.029). The present study shows that MT-2A expression is related to changing expression of zinc transporter genes, specifically ZIP1, in response to zinc supplementation. The current report adds to our understanding of MT in the coordinated nature of cellular zinc homeostasis.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0494-y) contains supplementary material, which is available to authorized users.  相似文献   

20.
The effects of dietary zinc deficiency (ZD) on the composition and metabolism of the fatty acyl chains of phospholipids in rat liver were investigated with a fat-free diet. The levels of (n−9) fatty acids such as 18∶1 and 20∶3(n−9) in liver phospholipids (PL) were significantly lower in ZD-rats (19.4% and 5.4%, respectively) than in PF-rats (25.2 and 8.3%). On the other hand, the level of (n−6) acids such as 18∶2 and 20∶4 were higher in ZD-rats (3.3 and 19.1%, respectively) than in PF-rats (2.1 and 14.9%). In order to study the metabolism of fatty acids in vivo,14C-18∶0 or14C-18∶2 was intravenously injected, and then the conversion to the respective metabolite was examined. After the injection of14C-18∶0, the radioactivity was found in 18∶0 (49.3% of the total), 18∶1 (33.2%), and 20∶3 (n−9) (9.1%) in liver PL in PF-rats at 24h. In ZD-rats, the radioactivity was dramatically lower in 18∶1 (23.5%) and 20∶ (n−9) (3.6%), suggesting that the conversion of 18∶0 to 18∶1 and 20∶3 (n−9) was strongly inhibited in ZD-rats. When14C-18∶2 was injected, the radioactivity was mainly found in 18∶2, 20∶3(n−6), and 20∶4. The radioactivity in 20∶4 in ZD-rats was slightly higher than that in control rats. These results indicate that zinc deficiency affects the fatty acid metabolism in liver, in particular, it causes a reduction in δ9 desaturase activity, when rats are fed a fat-free diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号