首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between light intensity, nitrogen availability and pigmentation was investigated in mixotrophic and heterotrophic cultures of the unicellular red alga Galdieria sulphuraria 074G, a potential host for production of the blue pigment, phycocyanin (PC). During the exponential growth phase of batch cultures, G. sulphuraria 074G contained 2–4 mg phycocyanin per g dry weight. In carbon-limited and nitrogen-sufficient batch cultures grown in darkness, this value increased to 8–12 mg g−1 dry weight during the stationary phase, whereas the phycocyanin content in nitrogen-deficient cells decreased to values below 1 mg g−1 dry weight during stationary phase. Light intensities between 0 and 100 μmol photons m−2 s−1 had no influence on phycocyanin accumulation in mixotrophic cultures grown on glucose or fructose, while light stimulated phycocyanin synthesis in cultures grown on glycerol, in which the phycocyanin content in stationary phase was increased from 10 mg g−1 dry weight in darkness to 20 mg g−1 dry weight at a light intensity of 80 μmol photons m−2 s−1. At higher light intensities, less phycocyanin accumulated than at lower intensities, irrespective of the carbon substrate used. In carbon-limited continuous flow cultures grown on glucose or glycerol at a dilution rate of 0.63 day−1, corresponding to 50% of the maximum specific growth rate, the highest steady-state phycocyanin content of 15–28 mg g−1 dry weight was found at 65 μmol photons m−2 s−1. In contrast to the apparent glucose repression of light-induced PC synthesis observed in batch cultures, no glucose repression of the light stimulation was observed in continuous flow cultures because the glucose concentration in the culture supernatant always remained at limiting levels. Despite the fact that G. sulphuraria 074G contains less phycocyanin than some other microalgae and cyanobacteria, the ability of G. sulphuraria 074G to grow and synthesize phycocyanin in heterotrophic or mixotrophic cultures makes it an interesting alternative to the cyanobacterium, Spirulina platensis presently used for synthesis of phycocyanin.  相似文献   

2.
《Aquatic Botany》2005,81(2):157-173
The main photosynthesis and respiration parameters (dark respiration rate, light saturated production rate, saturation irradiance, photosynthetic efficiency) were measured on a total of 23 macrophytes of the Thau lagoon (2 Phanerogams, 5 Chlorophyceae, 10 Rhodophyceae and 6 Phaeophyceae). Those measurements were performed in vitro under controlled conditions, close to the natural ones, and at several seasons. Concomitantly, measurements of pigment concentrations, carbon, phosphorous and nitrogen contents in tissues were performed. Seasonal intra-specific variability of photosynthetic parameters was found very high, enlightening an important acclimatation capacity. The highest photosynthetic capacities were found for Chlorophyceae (e.g. Monostroma obscurum thalli at 17 °C, 982 μmol O2 g−1 dw h−1 and 9.1 μmol O2 g−1 dw h−1/μmol photons m−2 s−1, respectively for light saturated net production rate and photosynthetic efficiency) and Phanerogams (e.g. Nanozostera noltii leaves at 25 °C, 583 μmol O2 g−1 dw h−1 and 2.6 μmol O2 g−1 dw h−1/μmol photons m−2 s−1 respectively for light saturated net production rate and photosynthetic efficiency). As expected, species with a high surface/volume ratio were found to be more productive than coarsely branched thalli and thick blades shaped species. Contrary to Rd (ranging 6.7–794 μmol O2 g−1 dw h−1, respectively for Rytiphlaea tinctoria at 7 °C and for Dasya sessilis at 25 °C) for which a positive relationship with water temperature was found whatever the species studied, the evolution of P/I curves with temperature exhibited different responses amongst the species. The results allowed to show summer nitrogen limitation for some species (Gracilaria bursa-pastoris and Ulva spp.) and to propose temperature preferences based on the photosynthetic parameters for some others (N. noltii, Zostera marina, Chaetomorpha linum).  相似文献   

3.
Secondary metabolites of lichens can be involved in production of chelates with heavy metals. We hypothesized that parietin plays important role in protection of photobiont cells in Xanthoria parietina from an excess of cadmium ions. Two types of X. parietina lichen thalli, natural with presence of secondary metabolite parietin (p+) as well as without parietin (p−) were exposed to different doses of cadmium (up to 300 μmol g−1 dw). Based on determination of the total and intracellular Cd-accumulation, ergosterol and thiobarbituric acid reactive substances (TBARS) content did not show statistically significant differences in the response of both types of thalli (p+ and p−). However, a stronger toxic effect of the highest Cd-dose on photosynthetic pigment content and chlorophyll a fluorescence was observed in the parietin-depleted thalli. The protective role of parietin against Cd excess was better supported and concluded from the differences observed in the production of non-protein thiol compounds (cysteine, glutathione and phytochelatins) involved in Cd detoxification. In the p+ thalli Cys content was stable but GSH content slightly decreased in the studied Cd range, while in the p− thalli these compounds were completely absent at high Cd doses. At Cd doses higher than 37.5 μmol Cd g−1 dw, toxic to both types of X. parietina thalli, Cys and GSH contents were significantly higher in p+ than in p− thalli. Also, the photobiont partner in the p+ thalli was better protected of the metal exposition, and able to produce phytochelatins (PCs) over the whole range of metal, while in the p− thalli the production was completely inhibited at 75 μmol Cd g−1 dw and higher concentrations, together with the inhibition of cysteine (Cys) and reduced glutathione (GSH) production. The obtained results indicate that the parietin layer is a natural barrier decreasing Cd access to algal cells in X. parietina. Comparison of PCs production appeared to be the most sensitive marker for estimation of Cd availability to photobiont in the symbiotic system.  相似文献   

4.
《Aquatic Botany》2005,81(4):326-342
The effects of NH4+ or NO3 on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3-N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3 treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3 cultures, 123.5 and 129.7%, respectively.Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3 contents were higher in NO3 (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3 (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3 (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3 was low in NH4+ treated plants, and an induction phase for NO3 was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.  相似文献   

5.
Response surface methodology (RSM) has been used to optimize the critical parameters responsible for higher Cd2+ removal by a unicellular cyanobacterium Synechocystis pevalekii. A three-level Box–Behnken factorial design was used to optimize pH, biomass and metal concentration for Cd2+ removal. A coefficient of determination (R2) value (0.99), model F-value (86.40) and its low p-value (F < 0.0001) along with lower value of coefficient of variation (5.61%) indicated the fitness of response surface quadratic model during the present study. At optimum pH (6.48), biomass concentration (0.25 mg protein ml?1) and metal concentration (5 μg ml?1) the model predicted 4.29 μg ml?1 Cd2+ removal and experimentally, 4.27 μg ml?1 Cd2+ removal was obtained.  相似文献   

6.
The aim of this work was to assess the potential for bacterial oxidation of hydrogen sulphide as a purification method of sour gas. Using a continuous culture of Chlorobium limicola, high efficiencies of oxidation of both soluble and gaseous sulphide were achieved, with efficiencies for the latter exceeding 95%. Sulphide added as aqueous sodium sulphide was converted to sulphur and sulphate with almost total removal of the initial 100 mg S l−1 within 24 h. Gaseous sulphide was oxidized at an efficiency of 95% (approximately 3 mmol S h−1 (unit biomass Abs)−1) over 1 h runs at a gas flow rate of 60 ml min−1. With a sulphur recovery system to prevent sulphur accumulation, an efficiency of 70% was maintained. Biological removal of sulphide represents a potentially important biotechnological process, with high potential for viable scale up.  相似文献   

7.
This paper describes the kinetic characterization of a recombinant whole-cell biocatalyst for the stereoselective Baeyer–Villiger type oxidation of bicyclo[3.2.0]hept-2-en-6-one to its corresponding regio-isomeric lactones (−)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one and (−)-(1R,5S)-3-oxabicyclo[3.3.0]oct-6-en-2-one. Escherichia coli TOP10 [pQR239], expressing cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus (NCIMB 9871), was shown to be suitable for this biotransformation since it expressed CHMO at a high level, was simple to produce, contained no contaminating lactone hydrolase activity and allowed the intracellular recycle of NAD(P)H necessary for the biotransformation. A small-scale biotransformation reactor (20 ml) was developed to allow rapid collection of intrinsic kinetic data. In this system, the optimized whole-cell biocatalyst exhibited a significantly lower specific lactone production activity (55–60 μmol min−1 g−1 dry weight) than that of sonicated cells (500 μmol min−1 g−1 dry weight). It was shown that this shortfall was comprised of a difference in the pH optima of the two biocatalyst forms and mass transfer limitations of the reactant and/or product across the cell barrier. Both reactant and product inhibition were evident. The optimum ketone concentration was between 0.2 and 0.4 g l−1 and at product concentrations above 4.5–5 g l−1 the specific activity of the whole cells was zero. These results suggest that a reactant feeding strategy and in situ product removal should be considered in subsequent process design.  相似文献   

8.
《Aquatic Botany》2007,86(3):295-299
Recovery ability in relation to carbohydrate content of Potamogeton maackianus growing in two dissolved oxygen concentrations (8 and 2 mg L−1) was investigated during 28 days exposure to very low irradiance (about 0.06 μmol m−2 s−1). Plant weight remained relatively constant (0.19 g dry wt plant−1) within the initial 21 days in the high oxygen treatment, but decreased to 0.14 g dry wt plant−1 at the end of the experiment. In low oxygen environments, plant weight was similar within the initial 14 days, but decreased to 0.08 g dry wt plant−1 at 21 day. During the experimental period, both soluble sugar and starch contents in shoots decreased with time. Compared to high oxygen treatment, plants in the low oxygen treatment depleted starch more quickly (25 versus 18 mg g−1 at 28 day) but remained a relatively high soluble sugar content (0.9 versus 1.8 mg g−1 at 28 day). After recovery in high light and high dissolved oxygen conditions for 1 week, plant growth rate, new branch number, stem elongation rate and leaf recruitment number were significantly higher in high oxygen than in the low oxygen treatments. These data suggest that the ability of the plant to recover from prolonged exposure to very low irradiance is related to the depletion level of carbohydrate stored in plant tissues, which is regulated by oxygen availability in the water.  相似文献   

9.
《Process Biochemistry》2010,45(12):1912-1915
Production of pyruvate from lactate through biocatalysis is a valuable process for its simple composition of reaction system and convenience of recovery. Biocatalyst with lactate-induced NAD-independent lactate dehydrogenases (iLDHs) can effectively catalyze lactate into pyruvate. To reduce the cost of biocatalyst preparation caused by indispensable lactate addition, the mutants with constitutive iLDH of Pseudomonas sp. XP-M2 were screened. Mutant XP-LM exhibited high iLDHs activities in minimal salt medium with cheap substrate glucose as the carbon source. The biocatalyst (8.2 g dry cell weight l−1) containing 169.8 U l−1 l-iLDH was prepared with 20 g 1−1 glucose. The cost-effective biocatalyst prepared from the mutant XP-LM could efficiently catalyze lactate into pyruvate with high yield (0.961 mol mol−1). Based on the different thermostability of d-iLDH and l-iLDH in the biocatalyst, whole cells of the strain might also have the potential in production of pyruvate and d-lactate from racemic lactate.  相似文献   

10.
The introduced shrub Tamarix ramosissima invades riparian zones, but loses competitiveness under flooding. Metabolic effects of flooding could be important for T. ramosissima, but have not been previously investigated. Photosynthesis rates, stomatal conductance, internal (intercellular) CO2, transpiration, and root alcohol dehydrogenase (ADH) activity were compared in T. ramosissima across soil types and under drained and flooded conditions in a greenhouse. Photosynthesis at 1500 μmol quanta m−2 s−1 (A1500) in flooded plants ranged from 2.3 to 6.2 μmol CO2 m−2 s−1 during the first week, but A1500 increased to 6.4–12.7 μmol CO2 m−2 s−1 by the third week of flooding. Stomatal conductance (gs) at 1500 μmol quanta m−2 s−1 also decreased initially during flooding, where gs was 0.018 to 0.099 mol H2O m−2 s−1 during the first week, but gs increased to 0.113–0.248 mol H2O m−2 s−1 by the third week of flooding. However, photosynthesis in flooded plants was reduced by non-stomatal limitations, and subsequent increases indicate metabolic acclimation to flooding. Root ADH activities were higher in flooded plants compared to drained plants, indicating oxygen stress. Lower photosynthesis and greater oxygen stress could account for the susceptibility of T. ramosissima at the onset of flooding. Soil type had no effect on photosynthesis or on root ADH activity. In the field, stomatal conductance, leaf water potential, transpiration, and leaf δ13C were compared between T. ramosissima and other flooded species. T. ramosissima had lower stomatal conductance and water potential compared to Populus deltoides and Phragmites australis. Differences in physiological responses for T. ramosissima could become important for ecological concerns.  相似文献   

11.
Soil respiration is the main form of carbon flux from soil to atmosphere in the global carbon cycle. The effect of temperature on soil respiration rate is important in evaluating the potential feedback of soil organic carbon to global warming. We incubated soils from the alpine meadow zone and upper rocky zone along an altitudinal gradient (4400–5500 m a.s.l.) on the Tibetan Plateau under various temperature and soil moisture conditions. We evaluated the potential effects of temperature and soil moisture on soil respiration and its variation across altitudes. Soil respiration rates increased as the temperature increased. At 60% of soil water content, they averaged 0.21–5.33 μmol g soil−1 day−1 in the alpine meadow zone and 0.11–0.50 μmol g soil−1 day−1 in the rocky zone over the experimental temperature range. Soil respiration rates in the rocky zone did not increase between 25 and 35 °C, probably because of heat stress. Rates of decomposition of organic matter were high in the rocky zone, where the CN ratio was smaller than in the middle altitudes. Soil respiration rates also increased with increasing soil water content from 10% to 80% at 15 °C, averaging 0.04–2.00 μmol g soil−1 day−1 in the alpine meadow zone and 0.03–0.35 μmol g soil−1 day−1 in the rocky zone. Maximum respiration rates were obtained in the middle part of the alpine slope in any case of experimental temperature and soil moisture. The change patterns in soil respiration rate along altitude showed similar change pattern in soil carbon content. Although the altitude is a variable including various environmental factors, it might be used as a surrogate parameter of soil carbon content in alpine zone. Results suggest that temperature, soil moisture and altitude are used as appropriate environmental indicators for estimating the spatial distribution of potential soil respiration in alpine zone.  相似文献   

12.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

13.
Cross-linked Sepharose beads were treated with laccase–TEMPO system for oxidation of the primary alcohol groups on the sugar moieties. Optimal activation conditions using Trametes versicolor laccase were at pH 5 and 22 °C, giving an aldehyde content of 55 μmol g−1 Sepharose with 28 units g−1 of laccase and 12.5 mM TEMPO. The activated Sepharose was used for immobilization of trypsin as model protein. Highest degree of immobilization was obtained at pH 10.5 but the activity yield was only 31% of that loaded on the gel. The yield of gel bound trypsin activity was increased to 76% (corresponding to about 43 U g−1 Sepharose) when the immobilization was performed in the presence of trypsin inhibitor, benzamidine. The immobilization yields were comparable to that obtained on the matrix activated using sodium periodate (containing 72 μmol aldehyde per g Sepharose). Recycling and storage of the immobilized trypsin preparations showed high stability of the enzyme bound to laccase–TEMPO activated gel.  相似文献   

14.
The study present evaluated the levels of mercury (Hg) and methylmercury (MeHg) in hair samples of people from Barreiras community, riverside inhabitants of the Tapajós River (Pará, Brazil), an area impacted by clandestine gold mining, as well as we analyzed the levels of Hg and Se (selenium) in nine fish species (carnivores and non-carnivorous) from the Tapajós River, which stand out as the main species consumed by riverside inhabitants, to evaluate a relationship between frequency of fish consumption and Hg concentration, and also to evaluate possible mechanisms of fish protection (or non-protection) to Hg exposure by Se. Furthermore we analyze the water quality to evaluate the environmental trophic state, fact responsible by creating conditions that can potentiate the effects of toxic mercury. Concentrations of Hg and MeHg were analyzed in hair samples of 141 volunteers in different age band. Of those, 84.40% of samples present values above the threshold for biological tolerance, which is 6.00 μg g−1 of total Hg in hair. Total Hg, in men there was a variation of 2.07–24.93 μg g−1, while for women the variation was 4.84–27.02 μg g−1. Consequently, the level of MeHg in men presented a variation of 1.49–19.57 μg g−1, with an average of 11.68 μg g−1, while with women the variation was from 3.73 to 22.35 μg g−1, with an average of 10.38 μg g−1. In fish species, Hg concentrations in carnivorous species had an average of 0.66 μg g−1, higher than that permitted by current legislation, ranging from 0.30 to 0.98 μg g−1, while the non-carnivorous species have values below the recommended by the legislation averaging 0.09 μg g−1, ranging between 0.02 and 0.44 μg g−1. For Se in fish, show that among carnivores, the contents of Se ranged between 0.18 and 0.54 μg g−1 with a mean of 0.34 μg g−1, while for non-carnivores these values were of the order of 0.16–0.56 μg g−1, with an average of 0.32 μg g−1. In surface water quality variables at the sampling points all showed values in accordance with the range established by current legislation. In this regard, the results provided by this study, while not conclusive, are strong indicators that despite not having been shown the relationship between the concentration of mercury in hair and feeding habits along the Tapajós River basin communities showed that a plausible correlation exists between levels of mercury and selenium in fish. This fact may serve as a subsidy to research human health, because in the Amazon, there is still a lot to examine with regards to the full understanding of the Se cycle.  相似文献   

15.
Protocorm cultures of Dendrobium candidum were established in balloon type bubble bioreactors using Murashige and Skoog (MS) medium with 0.5 mg l−1 α-naphthaleneacetic acid (NAA), 2.5% (w/v) sucrose, 5:25 mM NH4:NO3 and 1% (v/v) banana homogenate for the production of biomass and bioactive compounds. In 3 l bioreactor containing 2 l medium, a maximum protocorm biomass (21.0 g l−1 dry biomass) and also optimum quantities of total polysaccharides (389.3 mg g−1 DW), coumarins (18.0 mg g−1 DW), polyphenolics (11.9 mg g−1 DW), and flavonoids (4.5 mg g−1 DW) were achieved after 7 weeks of culture. Based on these studies, 5 and 10 l bioreactor cultures were established to harvest 80 g and 160 g dry biomass. In 10 l bioreactors, the protocorms grown were accumulated with optimal levels of polysaccharides (424.1 mg g−1 DW), coumarins (15.8 mg g−1 DW), polyphenols (9.03 mg g−1 DW) and flavonoids (4.7 mg g−1 DW). The bioreactor technology developed here will be useful for the production of important bioactive compounds from D. candidum.  相似文献   

16.
The kinetics of a stomatal response to sudden increases or decreases of CO2 concentrations ([CO2]) was studied in 13 plant species growing in the field. Plants were well supplied with water. In each plant, gas exchange measurements were made on a fully developed leaf that was first left to achieve steady-state stomatal conductance (gs) at 400 μmol (CO2) mol−1) and then exposed to a step change of [CO2] (to 700 μmol mol−1 in one experiment; and to 700 and back to 400 μmol mol−1 in a second experiment). Porometric data were captured in intervals of 3 s until a new steady state was reached.A comparison of t1/2, the half-time needed to achieve new gs, indicates similar responses of stomata in grasses when compared to herbs. The stomata of C4 plants responded in approximately 5 min, the highest closure rate was detected in Echinochloa crus-galli and Digitaria sanguinalis. Opening rates were similar to closing rates and the response as a whole was rather symmetric. In C3 plants, the full response of stomata was much slower. Analysis revealed differences in absolute rates of gs change between C3 and C4 plants. These differences can be related to the specificities of the type of photosynthetic metabolism. C4 photosynthesis enables plants to reduce gs, which can hasten further changes of diffusivity in response to the environmental signals. A possible coupling of C4 metabolism to the regulation of guard cells also has to be taken into account when explaining the observed results.  相似文献   

17.
Benthic dinoflagellates of the genus Ostreopsis are found all over the world in temperate, subtropical, and tropical coastal regions. Our recent studies revealed that a putative “cryptic” species of Ostreopsis ovata is present widely along Japanese coasts. This organism, Ostreopsis sp. 1, possesses palytoxin analogs and thus its toxic blooms may be responsible for potential toxification of marine organisms. To evaluate the bloom dynamics of Ostreopsis sp. 1, the present study examined the growth responses of Ostreopsis sp. 1 strain s0716 to various light intensities (photon flux densities: μmol photons m−2 s−1) using a newly devised photoirradiation-culture system. This novel system has white light-emitting diodes (LEDs) capable of more closely simulating the wavelength spectrum of light entering the oceanic water column than do fluorescent tubes and halogen lamps. In this system, the light intensity of the white LEDs was reduced through two polarizing filters by varying the rotation angles of the filters. Thereby, the new system was capable of culturing microalgae under well-controlled light intensity conditions. Ostreopsis sp. 1 grew proportionally when light intensity was increased from 49.5 to 199 μmol photons m−2 s−1, but its growth appeared to be inhibited slightly at ≥263 μmol photons m−2 s−1. The relationship between observed growth rates and light intensity was calculated at R > 0.99 (P < 0.01) using a regression analysis with a modified equation of the photosynthesis-light intensity (P-L) model. The equation determined the critical light intensities for growth of Ostreopsis sp. 1 and the organism's growth potential as follows: (1) the threshold light intensity for growth: 29.8 μmol photons m−2 s−1; (2) the optimum light intensity (Lm) giving the maximum growth rate (μmax = 0.659 divisions day−1): 196 μmol photons m−2 s−1; (3) the optimum light intensity range (Lopt) giving ≥95% μmax: 130–330 μmol photons m−2 s−1; (4) the semi-optimum range (Lsopt) giving ≥80% μmax: 90 to over 460 μmol photons m−2 s−1. The Lsopt represents 4.5–23% ambient light intensity present in surface waters off of a temperate region of the Japanese coast, Tosa Bay; putatively, this semi-optimum range of light intensity appears at depth of 12.9–27.8 m. Considering these issues, our data indicate that Ostreopsis sp. 1 in coastal environments may form blooms at ca. ∼28 m depth in regions along Japanese coasts.  相似文献   

18.
《Process Biochemistry》2007,42(3):335-343
A comparative study of the performance of two types of adsorbent (Streamline Quartz Base and Upfront Matrices), derivatized with the same affinity ligand (RPAP) to recover C595 diabody fragment (dbFv) from Escherichia coli lysates has been undertaken. Both streamline and Upfront Matrices are characterized by a particle size range of 100–300 μm. Streamline has a density of 1.20 g cm−3 and ligand concentration of 0.85 μmol ml−1. Upfront has a density of 1.35 g cm−3 and ligand concentration of 0.83 μmol ml−1. The release of C595 dbFv from E. coli cells was achieved by a chemical lysis method. The recovery performance of both adsorbents was evaluated in terms of operational productivity and elution yield of C595 dbFv in packed bed (clarified feedstock) and expanded bed (unclarified and clarified feedstock) chromatography systems. Streamline and Upfront adsorbents exhibited diabody operational productivities of 131 and 202 mg l−1, respectively, with an elution yield of 92 and 94%, respectively, in packed bed operation. Streamline and Upfront adsorbents exhibited diabody operational productivities of 54.5 and 123.7 mg l−1, respectively, with an elution yield of 89 and 92%, respectively, in expanded bed operation.  相似文献   

19.
The thermo-sensitive N-alkyl substituted polyacrylamide polymer was synthesized by radical polymerization and its lower critical solution temperature (LCST) was controlled to be 28 °C. The thermo-sensitive recovery of polymer was over 95% in the presence of 0.05 M NaClO4. Cibacron Blue F3GA was covalently immobilized onto the polymer via the nucleophilic reaction between the active chlorine atom of its triazine ring and the hydroxyl group of the polymer. The ligands density was 30 μmol g−1 polymer. The adsorption capacity of lysozyme on the polymer was 3.4 mg g−1polymer in affinity precipitation process. And over 90% of adsorbed lysozyme was eluted by 0.5 M KSCN at pH 8.0. When the affinity polymer was applied in the purification of lysozyme from egg white, the purification factor was 28 and lysozyme yield was 80% or so.  相似文献   

20.
《Aquatic Botany》2005,83(2):129-140
Bisexual populations of the charophyte Chara canescens (Desv. et Loisel. in Loisel., 1810) containing male and female individuals are rarely found. Two experiments were carried out to study whether male and female algae from the same site exhibit different physiological capacities, especially with respect to light acclimation.Algae from two different shore levels and from laboratory cultures acclimated to six irradiance conditions (35–500 μmol photons m−2 s−1) were compared. Field measurements showed that both female and male algae of C. canescens are able to acclimate to daily changes in solar irradiance. The quantum yield of Photosystem II (PSII) decreased with increasing irradiance in the morning and increased with decreasing irradiance in the afternoon. Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼7 mg FW) up to 500 μmol photons m−2 s−1 (∼27 mg FW) in female and male C. canescens. The irradiance saturation point for photosynthesis (Ek) was about 140 μmol m−2 s−1 for both sexes within the whole range of acclimation irradiances. The maximum photosynthesis rate at saturating irradiances (Pmax) of male algae was highest at Ek, whereas Pmax of female algae was highest at 500 μmol photons m−2 s−1. The photosynthetic efficiency in the light-limited range (α) increased in female C. canescens and decreased in male C. canescens. The ratio of the non-photochemical quenching parameter (NPQ) to the relative electron transport rates rETR(MT) increased in both sexes with irradiance, but showed a steeper increase in male than in female algae. Pigment analysis showed similar acclimation pattern for male and female C. canescens. Chl a/Chl b ratios of both sexes were constant over the whole range of Eg, whereas Chl a/carotenoid ratios in male and female C. canescens decreased from 70 μmol photons m−2 s−1 upwards. Pigment analysis pointed out that the carotenes α-, β- and γ-carotene were more prominent in male than in female algae.Our results indicate that female C. canescens are more efficient in light acclimation than male algae from the same site. Nevertheless, further investigations of bisexual C. canescens populations resolving CO2-uptake mechanisms and/or genetic differences are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号