首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis.   总被引:12,自引:0,他引:12  
The matrix metalloproteinases (MMPs) constitute a multigene family of over 23 secreted and cell-surface associated enzymes that cleave or degrade various pericellular substrates. In addition to virtually all extracellular matrix (ECM) compounds, their targets include other proteinases, chemotactic molecules, latent growth factors, growth factor-binding proteins and cell surface molecules. The MMP activity is controlled by the physiological tissue inhibitors of MMPs (TIMPs). There is much evidence that MMPs and their inhibitors play a key role during extracellular remodeling in physiological situations and in cancer progression. They have other functions that promoting tumor invasion. Indeed, they regulate early stages of tumor progression such as tumor growth and angiogenesis. Membrane type MMPs (MT-MMPs) constitute a new subset of cell surface-associated MMPs. The present review will focus on MT1-MMP which plays a major role at least, in the ECM remodeling, directly by degrading several of its components, and indirectly by activating pro-MMP2. As our knowledge on the field of MT1-MMP biology has grown, the unforeseen complexities of this enzyme and its interaction with its inhibitor TIMP-2 have emerged, often revealing unexpected mechanisms of action.  相似文献   

2.
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin–integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin–integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-κB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.  相似文献   

3.
Matrix metalloproteinases are important for the turnover of extracellular matrix in tissue. Recent studies have expanded their roles well beyond extracellular matrix degradation - they also cleave many growth factors, cytokines and cell adhesion molecules in the extracellular milieu, modulating their functions irreversibly. In particular, some matrix metalloproteinases that associate with the cell surface have arisen as intriguing regulators of cellular functions, including migration.  相似文献   

4.
Anchorage of cells to the extracellular matrix and integrin-mediated signals play crucial roles in cell survival. We have previously shown that during growth factor deprivation-induced apoptosis in human umbilical vein endothelial cells (HUVECs), key molecules in focal adhesions and adherens junctions are cleaved by caspases. In this study we provide evidence for a selective upregulation of cell-associated matrix metalloproteinases (MMPs). We observe a physical association of MMP2 with beta1 and alphav integrins, which increased three- to fourfold during apoptosis and is dependent upon integrin beta1 levels and activation state. Both enforced activation of beta1 integrin by a specific antibody and inhibition of MMPs protect HUVECs from apoptosis. We hypothesize that, prior to the commitment to apoptosis, 'inside-out' signals initiated by the apoptotic stimulus alter cell shape together with the activation states and/or the availability of integrins, which promote matrix-degrading activity around dying cells. This 'auxiliary' apoptotic pathway may interrupt ECM-mediated survival signaling, and thus accelerate the efficient execution of the cell death program.  相似文献   

5.
Rats learning the Morris water maze exhibit hippocampal changes in synaptic morphology and physiology that manifest as altered synaptic efficacy. Learning requires structural changes in the synapse, and multiple cell adhesion molecules appear to participate. The activity of these cell adhesion molecules is, in large part, dependent on their interaction with the extracellular matrix (ECM). Given that matrix metalloproteinases (MMPs) are responsible for transient alterations in the ECM, we predicted that MMP function is critical for hippocampal-dependent learning. In support of this, it was observed that hippocampal MMP-3 and -9 increased transiently during water maze acquisition as assessed by western blotting and mRNA analysis. The ability of the NMDA receptor channel blocker MK801 to attenuate these changes indicated that the transient MMP changes were in large part dependent upon NMDA receptor activation. Furthermore, inhibition of MMP activity with MMP-3 and -9 antisense oligonucleotides and/or MMP inhibitor FN-439 altered long-term potentiation and prevented acquisition in the Morris water maze. The learning-dependent MMP alterations were shown to modify the stability of the actin-binding protein cortactin, which plays an essential role in regulating the dendritic cytoskeleton and synaptic efficiency. Together these results indicate that changes in MMP function are critical to synaptic plasticity and hippocampal-dependent learning.  相似文献   

6.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

7.
Cell surface activation of progelatinase A (proMMP—2) and cell migration   总被引:16,自引:1,他引:15  
Gelatinase A (MMP-2) is considered to play a critical role in cell migration and invasion.The proteinase is cerceted from the cell as an inactive zymogen.In vivo it is postulated that activation of progelationase A (proMMP-2) takes place on the cell surface mediated by membrane-type matrix metalloproteinases (MT-MMPs).Recent studies have demonstrated that proMMP-2 is recruited to the cell surface by interacting with tissue inhibitor of metalloproteinases-2 (TIMP-2) bound to MT1-MMP by forming a ternary complex.Free MT1-MMP closely located to the ternary complex then activates proMMP-2 on the cell surface.MT1-MMP is found in cultured invasive cancer cells at the invadopodia.The MT-MMP/TIMP-2/MMP-2 system thus provides localized expression of proteolysis of the extracellular matrix required for cell migration.  相似文献   

8.
9.
INTRODUCTION: Photodynamic therapy is based on the selective retention of a photosensitizer by highly proliferating cells and its activation with light at the appropriate wavelength. This combination generates reactive oxygen species that ultimately kill the cells. Some cells, however, may survive photodynamic therapy and the interaction of these cells with the extracellular matrix has profound effect in tumor biology. The knowledge of photodynamic therapy action on the extracellular matrix has not been fully explored. It has been focused mainly on integrins, matrix metalloproteinases and on growth factors and immunological mediators. Other important molecules involved in the regulation of many cell processes are the glycosaminoglycans, polymers of disaccharide units, present on the cell surface and in the extracellular matrix. In most cases, the glycosaminoglycans occur as proteoglycans. AIMS: The purpose of the present investigation is to evaluate heparan sulfate proteoglycan expression and shedding, and its relation to the survival of the remaining cells, after a liposomal-AlClPc based photodynamic treatment. MATERIALS: A wild-type endothelial cell derived from rabbit aorta and its counterpart transfected with EJ-ras oncogene were used. RESULTS: Both cell lines presented augmented heparan sulfate proteoglycan syndecan-4 mRNA expression, augmented synthesis of heparan sulfate chains and increased shedding. Also, the formation of stress fibers on the border of the cells and the arrest in G(1) phase of the cell cycle was observed. CONCLUSIONS: These results show that surviving cells after photodynamic therapy exhibit changes in their morphology and cell processes that differ from that of non-treated cells, and these changes are probably hindering the cells from resuming normal proliferation.  相似文献   

10.
The P2X7 receptor is an ion‐gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X7 receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP‐treated glial cultures from neonatal C57BL/6 mice release and increase MMP‐9 activity, which is coupled with a decrease in release of TIMP‐1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3‐inflammasome formation. Treatment with a P2X7 receptor antagonist prevents ATP‐induced MMP‐9 activity, inhibition of active cathepsin B release and allows for TIMP‐1 to be released from the cell. We have shown that cathepsin B degrades TIMP‐1, and inhibition of cathepsin B allows for release of TIMP‐1 and inhibits MMP‐9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X7 antagonism, depletion of MMP‐9 or inhibition of cathepsin B.  相似文献   

11.
ABSTRACT

Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.  相似文献   

12.
Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.  相似文献   

13.
We have explored CD44 (a hyaluronan (HA) receptor) interaction with a Na(+)-H(+) exchanger (NHE1) and hyaluronidase-2 (Hyal-2) during HA-induced cellular signaling in human breast tumor cells (MDA-MB-231 cell line). Immunological analyses demonstrate that CD44s (standard form) and two signaling molecules (NHE1 and Hyal-2) are closely associated in a complex in MDA-MB-231 cells. These three proteins are also significantly enriched in cholesterol and ganglioside-containing lipid rafts, characterized as caveolin and flotillin-rich plasma membrane microdomains. The binding of HA to CD44 activates Na(+)-H(+) exchange activity which, in turn, promotes intracellular acidification and creates an acidic extracellular matrix environment. This leads to Hyal-2-mediated HA catabolism, HA modification, and cysteine proteinase (cathepsin B) activation resulting in breast tumor cell invasion. In addition, we have observed the following: (i) HA/CD44-activated Rho kinase (ROK) mediates NHE1 phosphorylation and activity, and (ii) inhibition of ROK or NHE1 activity (by treating cells with a ROK inhibitor, Y27632, or NHE1 blocker, S-(N-ethyl-N-isopropyl) amiloride, respectively) blocks NHE1 phosphorylation/Na(+)-H(+) exchange activity, reduces intracellular acidification, eliminates the acidic environment in the extracellular matrix, and suppresses breast tumor-specific behaviors (e.g. Hyal-2-mediated HA modification, cathepsin B activation, and tumor cell invasion). Finally, down-regulation of CD44 or Hyal-2 expression (by treating cells with CD44 or Hyal-2-specific small interfering RNAs) not only inhibits HA-mediated CD44 signaling (e.g. ROK-mediated Na(+)-H(+) exchanger reaction and cellular pH changes) but also impairs oncogenic events (e.g. Hyal-2 activity, hyaluronan modification, cathepsin B activation, and tumor cell invasion). Taken together, our results suggest that CD44 interaction with a ROK-activated NHE1 (a Na(+)-H(+) exchanger) in cholesterol/ganglioside-containing lipid rafts plays a pivotal role in promoting intracellular/extracellular acidification required for Hyal-2 and cysteine proteinase-mediated matrix degradation and breast cancer progression.  相似文献   

14.
Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the extracellular matrix turnover by inhibiting the proteolytic activity of matrix metalloproteinases (MMPs). TIMP-1 also displays MMP-independent activities that influence the behavior of various cell types including neuronal plasticity, but the underlying molecular mechanisms remain mostly unknown. The trans-membrane receptor low-density lipoprotein receptor-related protein-1 (LRP-1) consists of a large extracellular chain with distinct ligand-binding domains that interact with numerous ligands including TIMP-2 and TIMP-3 and a short transmembrane chain with intracellular motifs that allow endocytosis and confer signaling properties to LRP-1. We addressed TIMP-1 interaction with recombinant ligand-binding domains of LRP-1 expressed by CHO cells for endocytosis study, or linked onto sensor chips for surface plasmon resonance analysis. Primary cortical neurons bound and internalized endogenous TIMP-1 through a mechanism mediated by LRP-1. This resulted in inhibition of neurite outgrowth and increased growth cone volume. Using a mutated inactive TIMP-1 variant we showed that TIMP-1 effect on neurone morphology was independent of its MMP inhibitory activity. We conclude that TIMP-1 is a new ligand of LRP-1 and we highlight a new example of its MMP-independent, cytokine-like functions.  相似文献   

15.
Pericellular proteolysis represents one of the key modes by which the cell can modulate its environment, involving not only turnover of the extracellular matrix but also the regulation of cell membrane proteins, such as growth factors and their receptors. The metzincins are active players in such proteolytic events, and their mode of regulation is therefore of particular interest and importance. The TIMPs (tissue inhibitors of metalloproteinases) are established endogenous inhibitors of the matrix metalloproteinases (MMPs), and some have intriguing abilities to associate with the pericellular environment. It has been shown that TIMP-2 can bind to cell surface MT1-MMP (membrane-type 1 MMP) to act as a 'receptor' for proMMP-2 (progelatinase A), such that the latter can be activated efficiently in a localized fashion. We have examined the key structural features of TIMP-2 that determine this unique function, showing that Tyr36 and Glu192-Asp193 are vital for specific interactions with MT1-MMP and proMMP-2 respectively, and hence activation of proMMP-2. TIMP-3 is sequestered at the cell surface by association with the glycosaminoglycan chains of proteoglycans, especially heparan sulphate, and we have shown that it may play a role in the regulation of some ADAMs (a disintegrin and metalloproteinases), including tumour necrosis factor alpha-converting enzyme (TACE; ADAM17). We have established that key residues in TIMP-3 determine its interaction with TACE. Further studies of the features of TIMP-3 that determine specific binding to both ADAM and glycosaminoglycan are required in order to understand these unique properties.  相似文献   

16.
Integrin-mediated cell adhesion and spreading enables cells to respond to extracellular stimuli for cellular functions. Using a gastric carcinoma cell line that is usually round in adhesion, we explored the mechanisms underlying the cell spreading process, separate from adhesion, and the biological consequences of the process. The cells exhibited spreading behavior through the collaboration of integrin-extracellular matrix interaction with a Smad-mediated transforming growth factor beta1 (TGFbeta1) pathway that is mediated by protein kinase Cdelta (PKCdelta). TGFbeta1 treatment of the cells replated on extracellular matrix caused the expression and phosphorylation of PKCdelta, which is required for expression and activation of integrins. Increased expression of integrins alpha2 and alpha3 correlated with the spreading, functioning in activation of focal adhesion molecules. Smad3, but not Smad2, overexpression enhanced the TGFbeta1 effects. Furthermore, TGFbeta1 treatment and PKCdelta activity were required for increased motility on fibronectin and invasion through matrigel, indicating their correlation with the spreading behavior. Altogether, this study clearly evidenced that the signaling network, involving the Smad-dependent TGFbeta pathway, PKCdelta expression and phosphorylation, and integrin expression and activation, regulates cell spreading, motility, and invasion of the SNU16mAd gastric carcinoma cell variant.  相似文献   

17.
Tissue inhibitor of metalloproteinases-3 (TIMP-3) plays a key role in regulating extracellular matrix turnover by inhibiting matrix metalloproteinases (MMPs), adamalysins (ADAMs), and adamalysins with thrombospondin motifs (ADAMTSs). We demonstrate that levels of this physiologically important inhibitor can be regulated post-translationally by endocytosis. TIMP-3 was endocytosed and degraded by a number of cell types including chondrocytes, fibroblasts, and monocytes, and we found that the endocytic receptor low density lipoprotein receptor-related protein-1 (LRP-1) plays a major role in TIMP-3 internalization. However, the cellular uptake of TIMP-3 significantly slowed down after 10 h due to shedding of LRP-1 from the cell surface and formation of soluble LRP-1 (sLRP-1)-TIMP-3 complexes. Addition of TIMP-3 to HTB94 human chondrosarcoma cells increased the release of sLRP-1 fragments of 500, 215, 160, and 110 kDa into the medium in a concentration-dependent manner, and all of these fragments were able to bind to TIMP-3. TIMP-3 bound to sLRP-1, which was resistant to endocytosis, retained its inhibitory activity against metalloproteinases. Extracellular levels of sLRP-1 can thus increase the half-life of TIMP-3 in the extracellular space, controlling the bioavailability of TIMP-3 to inhibit metalloproteinases.  相似文献   

18.
The breakdown of the extracellular matrix (ECM) by proteinases is an essential step in the process of cancer invasion and metastasis. Malignant progression is frequently associated with upregulated production and/or activity of one or several ECM degrading proteinases. Prominent among them are the matrix metalloproteinases (MMPs). The MMPs constitute a family of structurally related, zinc-dependent endopeptidases collectively capable of degrading essentially all the components of the extracellular matrix. At present, 23 members of the human MMP gene family are known. The increased expression and/or activity of one or more members of this family have been documented in essentially all human malignancies and some have been implicated in the process of angiogenesis. Prominent among those are MMP-2 and MT1-MMP, two metalloproteinases that form a cell membrane-associated complex leading to MMP-2 activation and ECM proteolysis. Here, we review our data that identified the type 1 insulin-like growth factor receptor (IGF-IR) as a regulator of tumor invasion and the synthesis of MT1-MMP and MMP-2 and report on the signal transduction pathways that mediate this regulation. These findings are discussed in the context of a broader review of the role of the IGF-IR/IGF axis in the regulation of tumor invasion and metastasis.  相似文献   

19.
The proteolytic activity of matrix metalloproteinases (MMPs) towards extracellular matrix components is held in check by the tissue inhibitors of metalloproteinases (TIMPs). The binary complex of TIMP-2 and membrane-type-1 MMP (MT1-MMP) forms a cell surface located ''receptor'' involved in pro-MMP-2 activation. We have solved the 2.75 A crystal structure of the complex between the catalytic domain of human MT1-MMP (cdMT1-MMP) and bovine TIMP-2. In comparison with our previously determined MMP-3-TIMP-1 complex, both proteins are considerably tilted to one another and show new features. CdMT1-MMP, apart from exhibiting the classical MMP fold, displays two large insertions remote from the active-site cleft that might be important for interaction with macromolecular substrates. The TIMP-2 polypeptide chain, as in TIMP-1, folds into a continuous wedge; the A-B edge loop is much more elongated and tilted, however, wrapping around the S-loop and the beta-sheet rim of the MT1-MMP. In addition, both C-terminal edge loops make more interactions with the target enzyme. The C-terminal acidic tail of TIMP-2 is disordered but might adopt a defined structure upon binding to pro-MMP-2; the Ser2 side-chain of TIMP-2 extends into the voluminous S1'' specificity pocket of cdMT1-MMP, with its Ogamma pointing towards the carboxylate of the catalytic Glu240. The lower affinity of TIMP-1 for MT1-MMP compared with TIMP-2 might be explained by a reduced number of favourable interactions.  相似文献   

20.
The interaction of bone cells and their underlying extracellular matrix impacts biological processes such as maintenance of tissue integrity. The biological recognition of the extracellular matrix by attached cells is mediated by the activity of integrins that recognize adhesive-specific domains. The most widely recognized adhesive motif is the RGD sequence, common to many of the adhesive matrix molecules. Here, we show that cyclo DFKRG which was previously selected to increase cell adhesion of human bone marrow stromal cells (HBMSC), increases both cell differentiation and mineralization through activation of tyrosine kinases, focal adhesion kinase (p(125)FAK) and Mitogen Activated Protein (MAP) kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号