首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in extracellular matrix (ECM) are one of many components that contribute to impaired wound healing in aging. This study examined the effect of age on the glycosaminoglycan hyaluronan (HA) in normal and wounded dermis from young (4–6 month-old) and aged (22–24 month-old) mice. HA content and size were similar in the normal dermis of young and aged mice. Dermal explants labeled with [3H]-glucosamine showed decreased generation of smaller forms of HA in aged explants relative to young explants. Aged mice exhibited delayed wound repair compared with young mice with the greatest differential at 5 days. Expression of hyaluronan synthase (HAS) 2 and 3, and hyaluronidase (HYAL) 1–3 mRNA in wounds of young and aged mice was similar. There was a trend toward a decreased HYAL protein expression in aged wound dermis, which was accompanied by changes in detectable HYAL activity. Total HA content was similar in young and aged wound dermis. There was significantly less HA in the lower MW range (~ 250 kDa and smaller) in 5-day wound dermis, but not in 9-day wound dermis, from aged mice relative to young mice. We propose that decreased cleavage of HA is an additional component of impaired dermal wound healing in aging.  相似文献   

2.
Hyaluronan, a high-molecular-weight glycosaminoglycan of cartilage, is deposited directly into the extracellular space by hyaluronan synthases, while hyaluronan catabolism is mediated by the hyaluronidases. An in vitro cell culture system has been established in which human dermal fibroblasts are induced to undergo chondrogenesis. Here, we describe the differential modulation of the hyaluronidases and the up-regulation of the hyaluronan receptor, CD44, during such chondrogenesis. Dermal fibroblasts, plated in micromass cultures in the presence of lactic acid and staurosporine for 24 h, were then placed in serum-free, chemically defined medium. At 3 days, RNA was extracted and RT-PCR performed using primers for the hyaluronidase genes. Marked increase in HYAL1 expression was observed, with only moderate increases occurring in HYAL2 and HYAL3. No expression of HYAL4 and PH-20, the sperm-associated hyaluronidase, was detected. RNA levels correlated well with changes in hyaluronidase enzyme activity. Finally, greater expression and staining for the hyaluronan receptor, CD44s, the standard form, were detected. Differential expression of the somatic hyaluronidases and CD44-mediated hyaluronan turnover play a critical role in cartilage development from mesenchymal precursors.  相似文献   

3.
BackgroundTensioned collagen gels with dermal fibroblasts (DFs) as a dermis model are usually utilized in a static culture (SC) that lacks medium flowing. To make the model closer to its in vivo state, we created a device to perfuse the model with media flowing at a physiological velocity and examined the effects of medium flow (MF) on the cultures.MethodsWe constructed a medium perfusion device for human DF-embedded stretched collagen gels (human dermis model), exposed the model to media that flows upwardly at ~ 1 mL/day, and examined water retention of the gels, cells' growth ability, metabolic activity, expression profiles of nine extracellular matrix (ECM)-related genes. The obtained data were compared with those from the model in SC.ResultsMF increases the gels' water retention and cells' growth potential but had little effect on their metabolic activities. MF robustly enhanced hyaluronan synthase 2 (HAS2) and matrix metalloprotease 1 (MMP1) gene expressions but not of the other genes (MMP2, HYAL1, HYAL2, HYAL3, COL1A1, COL3A1, and CD44). MF significantly increased the amounts of cellular hyaluronan and adenosine triphosphate.ConclusionsThe MF at a physiological speed significantly influences the nature of ECMs and their resident fibroblasts and remodels ECMs by regulating hyaluronan metabolism.General significanceFibroblasts in tensioned collagen gels altered their phenotypes in a MF rate-dependent manner. Collagen gel culture with tension and MF could be utilized as an appropriate in vitro model of interstitial connective tissues to evaluate the pathophysiological significance of mechanosignals generated by fluid flow and cellular/extracellular tension.  相似文献   

4.
Interleukin-1beta (IL-1beta) elicits the expression of inflammatory mediators through a mechanism involving the CD44 receptor. Hyaluronan (HA) depolymerization also contributes to CD44 activation. This study investigated the potential of HA fragments, obtained by hyaluronidase (HYAL) treatment, as mediators of CD44 activation on IL-1beta-induced inflammation in mouse chondrocytes.mRNA and related protein levels were measured for CD44, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in chondrocytes, treated or untreated with IL-1beta, either with or without the addition of HYAL. The level of NF-kB activation was also assayed.CD44 mRNA expression was higher than controls in chondrocytes treated with IL-1beta. IL-1beta also induced NF-kB up-regulation and increased TNF-alpha, IL-6, MMP-13 and iNOS expression. Different effects resulted from HYAL treatment. Treatment of chondrocytes exposed to IL-1beta with HYAL synergistically increased the same parameters up-regulated by IL-1beta, while the same parameters were increased by HYAL in chondrocytes not exposed to IL-1beta but to a lesser extent. Specific CD44 blocking antibody and hyaluronan binding protein (HABP), which inhibit HA activity, were used to confirm CD44 to be the target of IL-1beta action through HA mediation. HA levels and molecular size further confirm the role of degraded HA.These findings suggest that IL-1beta exerts inflammatory activity via CD44 by the mediation of HA fragments derived from HA depolymerization.  相似文献   

5.
Squamous cell laryngeal carcinoma undergoes significant structural-related modifications of the extracellular matrix components (ECM), the most characteristics being the presence of degraded collagen, aggrecan and hyaluronan. We examined the presence of hyaluronidase and of the cellular hyaluronan receptor CD44 during the various stages of cancer. ECM components were extracted by using PBS, 4 M GdnHCl and 4 M GdnHCl-0.1% Triton-X 100 sequentially and hyaluronidase and CD44 analyzed by zymography and immunochemistry techniques. Total RNA was also extracted and the mRNA of the various hyaluronidases and of CD44 was analyzed after amplification with RT-PCR. Hyaluronidase was detected as a double band of 45 and 55 kDa molecular mass, only in cancer samples. The analysis of mRNA indicated an aberrant expression of PH-20, the testicular-type hyaluronidase, at late stages of cancer and an overexpression of HYAL1 only at stage IV. In addition, CD44 was identified in two protein bands of 80 and 64 kDa in cancer samples. The analysis of mRNA showed that hyaluronan receptor was expressed in a stage-related order. Thus, it could be suggested that in laryngeal squamous cell carcinoma, cancer cells migrated and proliferated under the influence of small molecular mass hyaluronan, by expressing increased amounts of its receptor.  相似文献   

6.
Internalization of the Hyaluronan Receptor CD44 by Chondrocytes   总被引:1,自引:0,他引:1  
Chondrocytes express CD44 as a primary receptor for the matrix macromolecule hyaluronan. Hyaluronan is responsible for the retention and organization of proteoglycan within cartilage, and hyaluronan-chondrocyte interactions are important for the assembly and maintenance of the cartilage matrix. Bovine articular chondrocytes were used to study the endocytosis and turnover of CD44 and the effects of receptor occupancy on this turnover. Matrix-intact chondrocytes exhibit approximately a 6% internalization of cell surface CD44 by 4 h. Treatment with Streptomyces hyaluronidase to remove endogenous pericellular matrix increased internalization to approximately 20% of cell surface CD44 at 4 h. This turnover could be partially inhibited by the addition of exogenous hyaluronan to these matrix-depleted chondrocytes. Cell surface biotin-labeled CD44 was internalized by chondrocytes and this internalization was decreased in the presence of hyaluronan. Colocalization of internalized CD44 and fluorescein-labeled hyaluronan in intracellular vesicles correlates with the previous results of receptor-mediated endocytosis pathway for the degradation of hyaluronan by acid hydrolases. Taken together, our results indicate that CD44 is internalized by chondrocytes and that CD44 turnover is modulated by occupancy with hyaluronan.  相似文献   

7.
8.
Hyaluronidase genes (HYAL) encode hyaluronidase enzymes required for hyaluronan degradation. Both in humans and in mouse, clustered hyaluronidase genes have been identified. Here, the porcine hyaluronidase cluster consisting of genes HYAL1, HYAL2 and HYAL3 was characterized. The porcine cDNA sequences and proteins share homologies to human orthologs of 85 and 81% for HYAL1, 87 and 89% for HYAL2 and 86 and 83% for HYAL3, respectively. The porcine hyaluronidase proteins approximately share a 40% homology with each other. Furthermore, genes FUS1 and FUS2 were found within this cluster, which was assigned to SSC13q21. A total of seven SNPs were detected in the genes (four in HYAL1, two in HYAL2 and one in HYAL3). Three of the four SNPs in HYAL1 led to amino acid exchanges (C622G --> Asp24 to Glu; C633T --> Pro28 to Leu, and G1298T --> Ala250 to Ser). The amino acid replacements induce putative changes in the extended strand at Asp24, in the extended strand and the random coil at Pro28, and finally in the random coil and the alpha helix at Ala250. Frequency estimations for four SNPs located in genes HYAL1 and HYAL3 using animals (n = 295) of nine European and six Chinese pig breeds indicated several significant deviations. For example, there were no significant differences in allele frequencies between pigs representing breeds Hampshire and Jiangquhai at SNP C633T (HYAL1), but between Hampshire respectively Jiangquhai animals and Rongchang pigs. Analysis of the same breeds at SNP C588T (HYAL3) indicates significant differences between Hampshire and Jiangquhai respectively Rongchang, but not between Jiangquhai and Rongchang. The breed G?ttingen Minipig displayed significant differences concerning two SNPs with respect to the other European pig breeds tested. For all three hyaluronidase genes, N-glycosylation sites are typical. For HYAL2 the lysosomal character was proven. The catalytic site responsible for HAase activity is conserved in the three enzymes. Expression of hyaluronidases was determined by RT-PCR and quantitative PCR. Broad gene expression was observed in different tissues for the three genes, respectively.  相似文献   

9.
Hyaluronan (HA) fragments are able to induce inflammation by stimulating both CD44 and toll-like receptor 4 (TLR-4). CD44 and TLR-4 activation stimulates the liberation of NF-kB and pro-inflammatory cytokine responses. The aim of this study was to investigate the effects of hyaluronidase (HYAL) treatment, which depolymerises HA into small fragments, and of the addition of specific hyaluronan synthases-1, 2, and 3 small interference RNA (HASs siRNA), which silence HASs activity, on normal mouse synovial fibroblasts (NSF) and on rheumatoid arthritis synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA). The addition of HYAL to NSF and/or RASF significantly increased the TLR-4, CD44 and NF-kB activity, as well as the pro-inflammatory cytokines, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-33 (IL-33) in both groups, but to a greater extent in RASF. The addition to NSF and/or RASF of the HASs siRNA, which block HASs activity and therefore the availability of HA substrate for HYAL, was able to reduce HYAL effects in both NSF and RASF. Finally, the HA evaluation confirmed the increment of HA at low molecular weight after HYAL treatment.  相似文献   

10.
Hyaluronidase “venom spreading factor” is a common component of snake venoms and indirectly potentiates venom toxicity. It may cause permanent local tissue destruction at the bite site/systemic collapse of the envenomated victim. The present study was performed to assess the benefits of inhibiting the hyaluronidase activity of Egyptian horned viper, Cerastes cerastes (Cc). The aqueous extracts of some medicinal plants were screened for their inhibitory effect on hyaluronidase activity of Cc venom. The results revealed that the Rosmarinus officinalis (Ro) extract is the most potent hyaluronidase inhibitor among the tested extracts. The Ro extract is more potent inhibitory effect on the hyaluronidase activity than the prepared rabbit monoclonal antiserum of previously purified hyaluronidase enzyme from Cc venom (anti-CcHaseII). In addition, the Ro extract is efficiently inhibited the activity of hemorrhagic toxin previously purified from Cc venom, and it also neutralized the edema inducing activity of the Cc venom in vivo. Furthermore, the Ro extract markedly increased the survival time of experimental mice injected with lethal dose of Cc venom up to 7 h in compared to mice injected with venom alone or with venom/anti-CcHaseII (15 ± 5, 75 ± 4 min), respectively. Our findings imply the significance of plant-derived hyaluronidase inhibitor in the neutralization of local effects of Cc venom and retardation of death time. Therefore, it may use as a therapeutic value in complementary snakebite therapy.  相似文献   

11.
《Animal reproduction science》2006,91(3-4):255-263
The aim of this study was to determine the effects of dexamethasone on sperm characteristics and hyaluronidase activity of serum and semen. In this investigation, 14 healthy Akkaraman rams, at the age of 2 years and weighing between 50–60 kg, were used. The rams were randomly divided into two groups. After the last administration of dexamethasone intramuscularly at a dose of 0.25 mg/kg, semen and blood samples were taken at different times. The results showed that the serum hyaluronidase activity was increased significantly (p < 0.001) in the treatment group when compared with the control group except for the 1st hour. There was a significant difference (p < 0.001, 0.01, 0.05) in the hyaluronidase activity of semen between the treatment group and the control group. Furthermore, there was a significant difference (p < 0.01) in sperm concentration between both groups at all the times except the 96th hour. There were statistically significant (p < 0.05) differences in semen volume between the treatment and control groups. There were also significant differences (p < 0.05) in sperm motility between the treatment and control groups except for the 72 and 96th hours.These findings indicate that dexamethasone increases hyaluronidase activity of serum and semen, but it decreases sperm concentration, semen volume and sperm motility in rams. Therefore the use of these drugs in breeding rams during breeding season is not suitable.  相似文献   

12.
CD44-mediated uptake and degradation of hyaluronan.   总被引:8,自引:0,他引:8  
Hyaluronan turnover occurs systemically from the lymph and serum as well as locally by the same cells responsible for its synthesis. Local turnover involves receptor-mediated uptake and delivery to lysosomes. Of the many hyaluronan binding proteins/receptors known, the participation of CD44 in the internalization of hyaluronan has been best characterized. Some fraction of the hyaluronan bound to CD44 becomes internalized and delivered to lysosomes by a mechanism that is not dependent on clatherin, caveolae or pinocytosis. In cells such as chondrocytes, anabolic and catabolic cytokines can alter the activity of CD44 toward hyaluronan internalization. However, the mechanism of cellular regulation remains unclear. Regulation may involve the participation of alternatively spliced isoforms of CD44, changes in CD44 phosphorylation, changes in cytoskeletal binding proteins or, the activity or extracellular proteolytic activity.  相似文献   

13.
5-Aminolevulinate synthase (ALAS), a pyridoxal-5′phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0–3.0 and 7.5–10.5) and temperature (20 and 37 °C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH 2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH 10.5 and pH 9.5/37 °C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420 nm to 330 nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH 1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH 9.5/37 °C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme.  相似文献   

14.
15.
Low-molecular-weight hyaluronan (LMW-HA) has attracted much attention because of its many potential applications. Here, we efficiently produced specific LMW-HAs from sucrose in Bacillus subtilis. By coexpressing the identified committed genes (tuaD, gtaB, glmU, glmM, and glmS) and downregulating the glycolytic pathway, HA production was significantly increased from 1.01 g L−1 to 3.16 g L−1, with a molecular weight range of 1.40×106–1.83×106 Da. When leech hyaluronidase was actively expressed after N-terminal engineering (1.62×106 U mL−1), the production of HA was substantially increased from 5.96 g L−1 to 19.38 g L−1. The level of hyaluronidase was rationally regulated with a ribosome-binding site engineering strategy, allowing the production of LMW-HAs with a molecular weight range of 2.20×103–1.42×106 Da. Our results confirm that this strategy for the controllable expression of hyaluronidase, together with the optimization of the HA synthetic pathway, effectively produces specific LMW-HAs, and could also be used to produce other LMW polysaccharides.  相似文献   

16.
The migration of mesenchymal stem cells (MSCs) plays a key role in tumor-targeted delivery vehicles and tumor-related stroma formation. However, there so far has been no report on the distribution of cell surface molecules during the VEGF-induced migration of MSCs. Here, we have utilized near-field scanning optical microscopy (NSOM) combined with fluorescent quantum dot (QD)-based nano-technology to capture the functional relationship between CD44 and CD29 adhesion molecules on MSCs and the effect of their spatial rearrangements. Before VEGF-induced migration of MSCs, both CD44 and CD29 formed 200–220 nm nano-domains respectively, with little co-localization between the two types of domains. Surprisingly, the size of the CD44 nano-domain rapidly increased in size to 295 nm and apparently larger aggregates were formed following MSC treatment with VEGF for 10 min, while the area of co-localization increased to 0.327 μm2. Compared with CD44, CD29 was activated obviously later, for the fact that CD29 aggregation didn't appear until 30 min after VEGF treatment. Consistently, its co-localization area increased to 0.917 μm2. The CD44 and CD29 nano-domains further aggregated into larger nano-domains or even formed micro-domains on the membrane of activated MSCs. The aggregation and co-localization of these molecules promoted FAK formation and cytoskeleton rearrangement. All of the above changes induced by VEGF contributed to MSC migration. Taken together, our data of NSOM-based dual color fluorescent imaging demonstrated for the first time that CD44, together with CD29, involved in VEGF-induced migration of MSCs through the interaction between CD44 and its co-receptor of VEGFR-2.  相似文献   

17.
The past two decades triterpenes have attracted attention because of their pharmacological potential, especially its anti-oxidant activity. The present study was aimed to evaluate the possible protective effects of the triterpene betulin on porcine chondrocytes. For this, the cells were treated with different doses of betulin (0.02, 0.32 and 5.12 μg/mL) and without betulin. Biochemical measures of necrosis, mitochondrial activity, DNA content and sulphated glycosaminoglycans (sGAG) were reported. In addition, the gene expression of extracellular matrix molecules (ECM), proteases and soluble factors were examined. The abundance of reactive oxygen species (ROS) was also reported. Among the concentrations tried 0.32 μg/mL of betulin was found to be optimum because it effectively promoted the gene expressions of type II collagen, aggrecan and inhibited the gene expression of matrix metalloproteinase 2 (MMP-2). The chemiluminescence (CL) assay indicated that betulin treated chondrocytes had better free radical scavenging activity than the chondrocytes cultured without betulin. Alcian blue staining revealed that the chondrocytes were functionally active and able to synthesis sGAG. The free radical scavenging activity ensures betulin as protectant of chondrocytes and it further maintains the proliferation and basic activities of chondrocytes.  相似文献   

18.
Bone morphogenetic protein 7 (BMP-7) regulates cellular metabolism in embryonic and adult tissues. Signal transduction occurs through the activation of intracellular Smad proteins. In this paper, using a yeast two-hybrid screen, Smad1 was found to interact with the cytoplasmic domain of CD44, a receptor for the extracellular matrix macromolecule hyaluronan. Coimmunoprecipitation experiments confirmed the interaction of Smad1 with full-length CD44-interactions that did not occur when CD44 receptors truncated within the cytoplasmic domain were tested. Chondrocytes overexpressing a truncated CD44 on a background of endogenous full-length CD44 no longer exhibited Smad1 nuclear translocation upon BMP-7 stimulation. Further, pretreatment of chondrocytes with Streptomyces hyaluronidase to disrupt extracellular hyaluronan-cell interactions inhibited BMP-7-mediated Smad1 phosphorylation, nuclear translocation of Smad1 or Smad4, and SBE4-luciferase reporter activation. These results support a functional link between the BMP signaling cascade and CD44. Thus, changes in hyaluronan-cell interactions may serve as a means to modulate cellular responsiveness to BMP.  相似文献   

19.
Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated ±25° at 0.01, 0.1, and 1 Hz to generate 0.28, 2.8, and 28 mm/s, respectively. The median velocity of these ‘open’ motion trajectories was tested against ‘closed’ motion trajectories in that the scaffold oscillated ±20° against the ball at 1 Hz, reaching 2.8 mm/s. Constructs were loaded twice a day for 1 h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed.Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28 mm/s, while all other measured variables were considerably up-regulated at 28 mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA.To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion.  相似文献   

20.
《Small Ruminant Research》2009,82(2-3):90-95
The aim of this study was to determine the effects of the antioxidants glutamine and hyaluronan and the inclusion of different levels on microscopic semen parameters, lipid peroxidation and the antioxidant activities following the freeze–thawing of Angora goat semen. Ejaculates collected from three Angora goat bucks, were evaluated and pooled at 37 °C. The semen samples which were diluted with a Tris-based extender containing additives including glutamine (2.5; 5 mM) and hyaluronan (500; 1000 μl/ml), and an extender containing no antioxidants (control) were cooled to 5 °C and frozen in 0.25 ml French straws and stored in liquid nitrogen. Frozen straws were thawed individually (37 °C) for 20 s in a water bath for microscopic evaluation. Freezing extenders supplemented with 2.5 and 5 mM glutamine led to higher sperm motility and hypo-osmotic swelling test (HOST) values, compared to the control (P < 0.05) following the freeze–thawing process. The addition of 500 μl/ml hyaluronan resulted in a higher HOST percentage, compared to the addition of 1000 μl/ml hyaluronan and the control (P < 0.001). No significant difference was recorded in the percentage acrosome and total sperm abnormalities, following supplementation with antioxidants. The addition of antioxidants did not prevent malondialdehyde (MDA) formation, compared to the controls. Antioxidant treatment however decreased (P < 0.01) the superoxide dismutase (SOD) activity. The maintenance of catalase (CAT) activity was demonstrated to be insignificant following addition of antioxidants. Further studies are required to obtain more repeatable results regarding the characterization of the enzymatic and non-enzymatic antioxidant systems in cryopreserved goat sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号