首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monoclonal L5 antibody reacts with an N-glycosidically linked carbohydrate structure which is present on the neural cell adhesion molecule L1, neural chondroitin sulfate proteoglycans, and other not yet identified glycosylated proteins. Using this antibody, we isolated and characterized proteoglycans from adult mouse brain and cultured astrocytes biosynthetically labeled with Na2 35SO4 and a 3H-amino acid mixture. Our data suggest that the L5 proteoglycans of both sources are identical in their biochemical properties. The apparent molecular mass of the L5 proteoglycan is approximately 500 kDa. Digestion of the iodinated L5 proteoglycan from mouse brain and of the [35S]methionine-labeled L5 proteoglycan from cultured astrocytes with proteinase-free chondroitinases ABC and AC revealed three major core proteins with apparent molecular masses of approximately 380, 360, and 260 kDa. These represent molecularly distinct protein cores.  相似文献   

2.
The small leucine-rich proteoglycan (SLRP) family has significantly expanded in the past decade to now encompass five discrete classes, grouped by common structural and functional properties. Some of these gene products are not classical proteoglycans, whereas others have new and unique features. In addition to being structural proteins, SLRPs constitute a network of signal regulation: being mostly extracellular, they are upstream of multiple signaling cascades. They affect intracellular phosphorylation, a major conduit of information for cellular responses, and modulate distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor beta superfamily members, receptor tyrosine kinases such as ErbB family members and the insulin-like growth factor I receptor, and Toll-like receptors. The wealth of mechanistic insights into the molecular and cellular functions of SLRPs has revealed both the sophistication of this family of regulatory proteins and the challenges that remain in uncovering the totality of their functions. This review is focused on novel biological functions of SLRPs with special emphasis on their protein cores, newly described genetic diseases, and signaling events in which SLRPs play key functions.  相似文献   

3.
1. The structure of chondroitin/dermatan and heparan-sulphate chains from various proteoglycan populations derived from cultured human skin fibroblasts have been examined. Confluent cell cultures were biosynthetically labelled with [3H]-glucosamine and 35SO4(2-), and proteoglycans were purified according to buoyant density, size and charge density [Schmidtchen, A., Carlstedt, I., Malmstr?m, A. & Fransson, L.-A. (1990) Biochem. J. 265, 289-300]. Some proteoglycan fractions were further fractionated according to hydrophobicity on octyl-Sepharose in Triton X-100 gradients. The glycosaminoglycan chains, intact or degraded by chemical or enzymic methods were then analysed by gel chromatography on Sepharose CL-6B, Bio-Gel P-6, ion exchange HPLC and gel electrophoresis. 2. Three types of dermatan-sulphate chains were identified on the basis of disaccharide composition and chain length. They were derived from the large proteoglycan, two small proteoglycans and a cell-associated proteoglycan with core proteins of 90 kDa and 45 kDa. Intracellular, free dermatan-sulphate chains were very similar to those of the small proteoglycans. 3. Heparan-sulphate chains from different proteoglycans had, in spite of small but distinct differences in size, strikingly similar compositional features. They contained similar amounts of D-glucuronate, L-iduronate (with or without sulphate) and N-sulphate groups. They all displayed heparin-lyase-resistant domains with average molecular mass of 10-15 kDa. The heparan-sulphate chains from proteoglycans with 250-kDa and 350-kDa cores were the largest greater than 50 kDa), containing an average of four or five domains, in contrast to heparan-sulphate chains from the small heparan-sulphate proteoglycans which had average molecular mass of 45 kDa and consisted of three or four such domains. Free, cell-associated heparan-sulphate chains were heterogeneous in size (5-45 kDa). 4. These results suggest that the core protein may have important regulatory functions with regard to dermatan-sulphate synthesis. On the other hand, synthesis of heparan sulphate may be largely controlled by the cell that expresses a particular proteoglycan core protein.  相似文献   

4.
Our knowledge of proteoglycan biology has significantly expanded over the past decade with the discovery of a host of new members of this multifunctional family leading to their present classification into three major categories: (1) small leucine-rich proteoglycans, 2) modular proteoglycans, and 3) cell-surface proteoglycans. In addition to being structural proteins, proteoglycans play a major role in signal transduction with regulatory functions in various cellular processes. Being mostly extracellular, they are upstream of many signaling cascades and are capable of affecting intracellular phosphorylation events and modulating distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor superfamily members, receptor tyrosine kinases, the insulin-like growth factor-I receptor, and Toll-like receptors. Mechanistic insights into the molecular and cellular functions of proteoglycans have revealed both the sophistication of these regulatory proteins and the challenges that remain in uncovering the entirety of their biological functions. This review aims to summarize the multiple functions of proteoglycans with special emphasis on their intricate composition and the newly described signaling events in which these molecules play a key role.  相似文献   

5.
Evidence suggests that endothelial cell layer heparan sulfate proteoglycans include a variety of different sized molecules which most likely contain different protein cores. In the present report, approximately half of endothelial cell surface associated heparan sulfate proteoglycan is shown to be releasable with soluble heparin. The remaining cell surface heparan sulfate proteoglycan, as well as extracellular matrix heparan sulfate proteoglycan, cannot be removed from the cells with heparin. The heparin nonreleasable cell surface proteoglycan can be released by membrane disrupting agents and is able to intercalate into liposomes. When the heparin releasable and nonreleasable cell surface heparan sulfate proteoglycans are compared, differences in proteoglycan size are also evident. Furthermore, the intact heparin releasable heparan sulfate proteoglycan is closer in size to proteoglycans isolated from the extracellular matrix and from growth medium than to that which is heparin nonreleasable. These data indicate that cultured porcine aortic endothelial cells contain at least two distinct types of cell surface heparan sulfate proteoglycans, one of which appears to be associated with the cells through its glycosaminoglycan chains. The other (which is more tightly associated) is probably linked via a membrane intercalated protein core.Abbreviations ECM extracellular matrix - HSPG heparan sulfate proteoglycan - PAE porcine aortic endothelial - PBS phosphate buffered saline  相似文献   

6.
Aggrecan family proteoglycans, phosphacan/RPTPzeta/beta, and neuroglycan C (NGC) are the major classes of chondroitin sulfate proteoglycan in the developing mammalian brain. A multidomain is a common structural feature of these proteoglycans which can interact with various molecules including growth factors, cell adhesion molecules, and extracellular matrix molecules. Individual proteoglycans are distributed in the developing brain in a distinct temporal and spatial pattern, suggesting that they are involved in distinct phases of the brain development through multiple molecular interactions. This review mainly summarizes recent studies on the involvement of these three classes of proteoglycan in cell-cell and cell-substratum interactions during the brain development. Their expressions and proposed functional roles in injured brains are also mentioned. In addition, this review briefly covers potential functions of other neural chondroitin sulfate proteoglycans such as decorin, testican, NG2 proteoglycan, and amyloid precursor protein (APP) in developing and injured brains.  相似文献   

7.
Cultured arterial smooth muscle cells synthesize and secrete two types of sulfated proteoglycans designated as proteoglycan A and proteoglycan B. Proteoglycan A has been characterized as chondroitin sulfate-rich, whereas proteoglycan B was found to be dermatan sulfate-rich [Schmidt, A. & Buddecke, E. (1985) Eur. J. Biochem. 153, 260-273]. During the logarithmic growth phase, arterial smooth muscle cells incorporated about 3 times more [35S]sulfate into the total proteoglycans secreted into the culture medium than did non-dividing cells. When arterial smooth muscle cells stopped proliferating the ratio of [35S]proteoglycan A/B increased. No differences were detected in the respective molecular and chemical characteristics of purified proteoglycans A and B isolated from both proliferating and non-dividing cells. Regardless of the growth phase proteoglycan A had a molecular mass of about 280 kDa and contained 8-9 chondroitin sulfate-rich side chains. Proteoglycan B had a molecular mass of about 180 kDa and contained 6-7 dermatan sulfate-rich side chains. The [35S]methionine-labelled protein cores of proteoglycan A and B had a molecular mass of about 48 kDa, but were distinguishable by their specific reactions to monospecific antibodies. Proliferating cells endocytosed proteoglycan B at a rate up to 100% higher than that of non-dividing cells. In all growth phases proteoglycan A was endocytosed at a 10-fold lower rate than proteoglycan B.  相似文献   

8.
Proteoglycans: many forms and many functions.   总被引:34,自引:0,他引:34  
Proteoglycans are produced by most eukaryotic cells and are versatile components of pericellular and extracellular matrices. They belong to many different protein families. Their functions vary from the physical effects of the proteoglycan aggrecan, which binds with link protein to hyaluronan to form multimolecular aggregates in cartilage; to the intercalated membrane protein CD44 that has a proteoglycan form and is a receptor and a cell-binding site for hyaluronan; to heparan sulfate proteoglycans of the syndecan and other families that provide matrix binding sites and cell-surface receptors for growth factors such as fibroblast growth factor (FGF). One feature that recurs in proteoglycan biology is that their structure is open to extensive modulation during cellular expression. Examples of protein changes are known, but a major source of structural variation is in the glycosaminoglycan chains. The number of chains and their length can vary, as well as their pattern of sulfation. This may result in the switching of different chain types with different properties, e.g., chondroitin sulfate and heparan sulfate, and it may also result in the selective expression of sulfated chain sequences that have specific functions. The control of glycosaminoglycan structure is not well understood, but it does appear to be used to change the properties of proteoglycans to suit different biological needs. Proteoglycan forms of proteins are thus important modifiers of the organization of the pericellular and extracellular matrices and modulators of the processes that occur there.  相似文献   

9.
M E Herndon  A D Lander 《Neuron》1990,4(6):949-961
Cellular interactions in neural development are influenced by various extracellular proteins, many of which bind glycosaminoglycans or proteoglycans. Precise functions of nervous system proteoglycans remain unknown, in part because neural proteoglycan composition is poorly understood. In this study, 25 putative proteoglycan core proteins were identified in subcellular fractions of rat brain. Levels of many of these varied considerably during development. Membrane-associated proteoglycans included two heparan sulfate proteoglycans (cores of 50 and 59 kd) that are covalently linked to glycosyl-phosphatidylinositol lipid, as well as several that appear to aggregate either with themselves or with copurifying proteins. These data indicate that brain proteoglycans exhibit the abundance, structural diversity, and developmental regulation that would be anticipated for molecules with diverse developmental functions.  相似文献   

10.
We have previously shown (Berrou et al., J. Cell. Phys., 137:430-438, 1988) that porcine endothelial cell-conditioned medium (ECCM) stimulates proteoglycan synthesis by smooth muscle cells from pig aorta. ECCM stimulation requires protein cores for glycosaminoglycan chain initiation and is accompanied by an increase in the hydrodynamic size of proteoglycans secreted into the medium. This work investigates the mechanisms involved in the ECCM effect. 1) Control and ECCM stimulated proteoglycan synthesis (measured by a 20 min [35S]-sulfate labeling assay) was not inhibited by cycloheximide, indicating that the proteoglycans were composed of preexisting protein cores and that ECCM stimulates glycosylation of these protein cores. 2) Whereas ECCM stimulation of [35S]-methionine incorporation into secreted proteins only occurred after a 6 h incubation, the increase in [35S] methionine-labeled proteoglycans was observed after 1 h, and the increase was stable for at least 16 h. 3) As analysed by electrophoresis in SDS, chondroitinase digestion generated from [14C] serine-labeled proteoglycans 7 protein cores of high apparent molecular mass (550-200 kDa) and one of 47 kDa. The two protein cores of highest apparent molecular masses (550 and 460 kDa), but not the 47 kDa protein cores, showed increased [14C]-serine incorporation in response to ECCM (51%, as measured by Sepharose CL-6B chromatography). 4) Finally, incorporation of [35S]-sulfate into chondroitinase-generated glycosaminoglycan linkage stubs on protein cores was determined by Sepharose CL-6B chromatography: ECCM did not modify the ratio [35S]/[14C] in stimulated protein cores, indicating that ECCM did not affect the number of glycosaminoglycan chains. The results of these studies reveal that 1) endothelial cells secrete factor(s) that preferentially stimulate synthesis of the largest smooth muscle cell proteoglycans without structural modifications and 2) the stimulation proceeds via increased glycosylation of protein core through enhancement of xylosylated protein core, followed by enhanced protein synthesis.  相似文献   

11.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

12.
Mineral-binding proteoglycans of fetal porcine calvarial bone   总被引:1,自引:0,他引:1  
To provide a more definitive characterization of the hydroxylapatite-associated proteoglycans (HAPG) of bone, proteins were extracted from the mineralized matrix of fetal porcine calvaria with 0.5 M EDTA in the absence of guanidine HCl. The small proteoglycans obtained in the extract were fractionated by gel filtration on Sepharose CL-6B, purified by ion-exchange chromatography on Polyanion matrix (fast protein liquid chromatography), and then separated into three major populations of chondroitin sulfate proteoglycans by chromatography on hydroxylapatite, all in the presence of 7 M urea. Based on immunological and chemical properties, two classes of bone proteoglycan were resolved. In one class (HAPG1), the proteoglycan and specific CNBr-derived peptides cross-reacted with three monoclonal antibodies that recognize different epitopes of the protein core of bovine skin proteodermatan sulfate. The other class of proteoglycan included two species (HAPG2, HAPG3) which were not recognized by these antibodies. In addition, these proteoglycans did not stain with Coomassie Blue R-250 nor with silver stain nor did they bind to nitrocellulose membranes used in Western blots. However, the cationic dye Stains-all stained both HAPG2 and HAPG3; the protein cores of these proteoglycans were stained a characteristic turquoise blue, whereas the protein core of HAPG1 was stained pink. The average Mr values of the bone proteoglycans, from gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis were: HAPG1, 120,000, with a protein core (chondroitinase AC-digested) of 45,000; HAPG2 and HAPG3, 110,000, with protein cores of 37,000-38,000. On 15% polyacrylamide gel electrophoresis, the protein cores of HAPG2 and HAPG3 migrated with an Mr 30,000, while HAPG1 protein core was unchanged (Mr 45,000). Based on amino acid analysis, the protein chains of HAPG2 and HAPG3 appear to be identical, although minor differences in the relative amount of glucosamine were evident. In contrast, the composition of HAPG1 was quite different, with higher relative amounts of hydrophobic and aromatic residues and lower amounts of Asx and Glx. The presence of 360 residues/1,000 of Asx and Glx in HAPG2 and HAPG3 may in part explain the characteristic staining and immunotransfer properties of these proteoglycans. The unique amino-terminal sequence of HAPG2 (Asn-Pro-Val-Ala-Arg-Tyr-Gln), together with the immunological and chemical properties, would indicate that HAPG2 and HAPG3 are novel proteoglycans and, unlike HAPG1, could be unique to mineralized tissues.  相似文献   

13.
Radioisotopically labeled proteoglycans were isolated from a 4 M guanidine HCl, 2% Triton X-100 extract of corneal stroma from day 18 chicken embryos by anion-exchange chromatography. Two predominant proteoglycans in the sample were separated by octyl-Sepharose chromatography using a gradient elution of detergent in 4 M guanidine HCl. One proteoglycan had an overall mass of approximately 125 kDa, a single dermatan sulfate chain (approximately 85-90% chondroitin 4-sulfate, low iduronate content) of approximately 65 kDa, and a core protein after chondroitinase ABC digestion of approximately 45 kDa which also contained one to three N-linked oligosaccharides and one O-linked oligosaccharide. The other proteoglycan had an overall size of approximately 100 kDa, two to three keratan sulfate chains of approximately 15 kDa each, and a core protein following keratanase digestion of approximately 51 kDa which included two to three N-linked but no O-linked oligosaccharides. A larger size, a greater overall hydrophobicity (as measured by its interaction with octyl-Sepharose) and an absence of O-linked oligosaccharides argue that this core protein is a distinct gene product from the core protein of the dermatan sulfate proteoglycan.  相似文献   

14.
《The Journal of cell biology》1989,109(6):3199-3211
Cultured human lung fibroblasts produce a large, nonhydrophobic heparan sulfate proteoglycan that accumulates in the extracellular matrix of the monolayer (Heremans, A., J. J. Cassiman, H. Van den Berghe, and G. David. 1988. J. Biol. Chem. 263: 4731-4739). A panel of four monoclonal antibodies, specific for four distinct epitopes on the 400-kD core protein of this extracellular matrix heparan sulfate proteoglycan, detects similar proteoglycans in human epithelial cell cultures. Immunohistochemistry of human tissues with the monoclonal antibodies reveals that these proteoglycans are concentrated at cell-matrix interfaces. Immunogold labeling of ultracryosections of human skin indicates that the proteoglycan epitopes are nonhomogeneously distributed over the width of the basement membrane. Immunochemical investigations and amino acid sequence analysis indicate that the proteoglycan from the fibroblast matrix shares several structural features with the large, low density heparan sulfate proteoglycan isolated from the Engelbreth-Holm-Swarm sarcoma. Thus, both epithelial cell sheets and individual mesenchymal cells accumulate a large heparan sulfate proteoglycan(s) at the interface with the interstitial matrix, where the proteoglycan may adopt a specific topological orientation with respect to this matrix.  相似文献   

15.
The major families of proteoglycans in human arterial tissue have been localized and characterized by electron microscopy. After staining with the polycationic dye cuprolinic blue in the presence of a critical electrolyte concentration, three differently sized populations of proteoglycan-cuprolinic blue precipitates are found. The precipitates are distinguished of the basis of their morphology, topographical distribution and susceptibility to specific glycosaminoglycan-degrading enzymes. Each type of proteoglycan is preferentially associated with one connective tissue component: (a) a dermatan sulfate proteoglycan interacts with collagenous fibers, (b) a heparan sulfate proteoglycan is associated with elastic fibers and with the exterior surface of the basement membrane-like layer surrounding smooth muscle cells, and (c) a chondroitin sulfate proteoglycan forms aggregates with hyaluronate in the soluble matrix. Information about the pattern of proteoglycans in normal human arterial tissue should constitute a useful basis for evaluating perturbations in proteoglycan distribution in arteriosclerotic plaques.  相似文献   

16.
More than 60% of brain chondroitin sulfate proteoglycans were extracted from 10-day-old rat brains by homogenization in ice-cold phosphate-buffered saline containing protease inhibitors. Although the soluble proteoglycan preparation was a mixture of chondroitin sulfate proteoglycans with a different hydrodynamic size as well as a different molecular density, each subfraction of the proteoglycans contained chondroitin sulfate side chains with virtually identical molecular weight (approximately 15,000) and chondroitin sulfate disaccharide composition (high content of 4-sulfate unit). Digestion of the purified proteoglycan preparation with protease-free chondroitinase ABC produced five core proteins with Mr = 250,000 (designated as 250K protein), 220,000 (220K), 150,000 (150K), 130,000 (130K), and 93,000 (93K). All these core proteins were obtained from chondroitin sulfate proteoglycan preparations extracted from various regions of the brain, but their composition varied among different brain regions. Analysis for amino acid composition of these core proteins and two-dimensional mapping of their proteolytic peptides revealed that three major core proteins (250K, 220K, and 150K proteins) were structurally different. These observations indicate that at least three distinct types of chondroitin sulfate proteoglycan occur in the developing rat brain.  相似文献   

17.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Numerous functions of heparan sulfate proteoglycans are mediated through interactions between their heparan sulfate glycosaminoglycan chains and extracellular ligands. Ligand binding specificity for some molecules, including many growth factors, is determined by complex heparan sulfate fine structure, where highly sulfated, iduronate-rich domains alternate with N-acetylated domains. Syndecan-4, a cell surface heparan sulfate proteoglycan, has a distinct role in cell adhesion, suggesting its chains may differ from those of other cell surface proteoglycans. To determine whether the specific role of syndecan-4 correlates with a distinct heparan sulfate structure, we have analyzed heparan sulfate chains from the different surface proteoglycans of a single fibroblast strain and compared their ability to bind the Hep II domain of fibronectin, a ligand known to promote focal adhesion formation through syndecan-4. Despite distinct molecular masses of glypican and syndecan glycosaminoglycans and minor differences in disaccharide composition and sulfation pattern, the overall proportion and distribution of sulfated regions and the affinity for the Hep II domain were similar. Therefore, adhesion regulation requires core protein determinants of syndecan-4.  相似文献   

19.
Chondroitin sulfate proteoglycans, which represent the main class of nonfibrous macromolecules found in the extracellular matrix of connective tissues, have been implicated in the control of a variety of cell activities during ontogenesis. The respective contributions of the chondroitin sulfate chains and of the protein moiety of the proteoglycan in morphogenesis and cytodifferentiation are not known. In this context, monoclonal antibodies identifying specific chondroitin sulfate chains are interesting new tools. A panel of well characterized monoclonal antibodies recognizing distinct epitopes present only in chondroitin sulfate chains was used in conjunction with immunohistochemical techniques for the purpose of identifying and mapping chondroitin sulfate isoforms during development in the mouse and rat fetus. Expression of chondroitin sulfate isoforms occurred in the tissues according to specific spatio-temporal patterns, suggesting that chondroitin sulfates differing in sulfation position and degree perform distinct functions in development.  相似文献   

20.
The mechanisms of synthesis and intracellular routing of the various cartilage matrix macromolecules are still unclear. We have studied this problem in cultured chondroblasts at the ultrastructural level using monospecific antibodies against the core protein of the keratan sulfate/chondroitin sulfate-rich cartilage proteoglycan (KS:CS-PG) or Type II procollagen, and cuprolinic blue, a cationic dye that binds to the glycosaminoglycan chains of proteoglycans. Intracellularly, the proteoglycan antibodies localized KS:CS-PG and its precursors primarily in the Golgi complex and secretory vesicles. In contrast, the bulk of Type II procollagen was found within the rough endoplasmic reticulum (ER). While devoid of collagen, the extracellular matrix was rich in KS:CS-PG molecules some of which studded the chondroblast plasmalemma. Cuprolinic blue staining indicated that the proteoglycans present in the Golgi complex fell into a predominant class of large proteoglycans, probably representing KS:CS-PG, and a minor class of smaller proteoglycans. Groups of these divergent proteoglycans often occupied distinct Golgi subcompartments; moreover, single large proteoglycans appeared to align along the luminal surface of Golgi cisternae and secretory vesicles. These results suggest that in cultured chondroblasts KS:CS-PG and Type II procollagen are differentially distributed both in organelles and in the extracellular matrix, and that different proteoglycan types may occupy distinct subcompartments in trans Golgi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号