首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxymethylglutaryl-CoA (HMG-CoA) reductase is the primary target in the current clinical treatment of hypercholesterolemias with specific inhibitors of the "statin" family. Statins are excellent inhibitors of the class I (human) enzyme but relatively poor inhibitors of the class II enzymes of important bacterial pathogens. To investigate the molecular basis for this difference we determined the x-ray structure of the class II Pseudomonas mevalonii HMG-CoA reductase in complex with the statin drug lovastatin. The structure shows lovastatin bound in the active site and its interactions with residues critically involved in catalysis and substrate binding. Binding of lovastatin also displaces the flap domain of the enzyme, which contains the catalytic residue His-381. Comparison with the structures of statins bound to the human enzyme revealed a similar mode of binding but marked differences in specific interactions that account for the observed differences in affinity. We suggest that these differences might be exploited to develop selective class II inhibitors for use as antibacterial agents against pathogenic microorganisms.  相似文献   

2.
Seo JW  Jeong JH  Shin CG  Lo SC  Han SS  Yu KW  Harada E  Han JY  Choi YE 《Phytochemistry》2005,66(8):869-877
Squalene synthase (SS) catalyzes the first committed step in sterol and triterpenoid biosynthesis. Transgenic Eleutherococcus senticosus Rupr. and Maxim. plants were generated by introducing an SS-encoding gene derived from Panax ginseng (PgSS1) together with genes expressing hygromycin phosphotransferase and green fluorescent protein (GFP) through Agrobacterium-mediated transformation. Early globular embryo clusters developing from the embryogenic callus were used for Agrobacterium-mediated transformation. Transformants were selected on Murashige Skoog medium containing 25 mg/L hygromycin. Hygromycin-resistant somatic embryos developed into plants after the cotyledonary embryos were treated with 14.4 microM gibberellic acid. Transformation was confirmed by polymerase chain reaction, Southern, and GFP analyses. The SS enzyme activity of the transgenic plants was up to 3-fold higher than that of wild-type plants. In addition, GC-MS and HPLC analysis revealed that phytosterols (beta-sitosterol and stigmasterol) as well as triterpene saponins (ciwujianosides B (1), C(1) (2), C(2) (3), C(3) (4), C(4) (5), D(1) (6) and D(2) (7)) levels in transgenic E. senticosus were increased by 2- to 2.5-fold. These results suggest that the metabolic engineering of E. senticosus to enhance production of phytosterols and triterpenoids by introducing the PgSS1 gene was successfully achieved by Agrobacterium-mediated genetic transformation.  相似文献   

3.
Regulation of hydroxymethylglutaryl-CoA reductase in rat leukocytes   总被引:4,自引:0,他引:4  
Methods were developed for the assay of hydroxymethylglutaryl-CoA reductase (NADPH) activity in microsomes from rat leukocytes. The activity in freshly isolated leukocytes is low compared to rat liver but can be assayed reliably. The patterns of response of leukocyte reductase in the assay to variation in substrate concentration, protein concentration, and time mimic those of rat liver reductase. Reductase activity in leukocyte microsomes, as in liver microsomes, is depressed by dietary cholesterol and by fasting and is elevated by dietary cholestyramine. Unlike liver reductase, leukocyte reductase activity does not exhibit a detectable diurnal rhythm. We conclude that the assay of reductase in freshly isolated leukocytes holds promise as a technique for detecting the effects of various factors on cholesterol synthesis in vivo.  相似文献   

4.
The effect of increased Mn-superoxide dismutase (SOD) on antioxidant enzymes and metabolites was studied using transformed maize, TG1+ and TG2+. The progeny of the backcross of each of the primary transformants with the parental line generated two populations denoted M6884 and M6885. These were grown at optimal (25 degrees C) and sub-optimal (18, 14 and 10 degrees C) temperatures to assess the impact of elevated SOD activity on cold tolerance and the antioxidant defences in maize. The plants of the M6885 population had similar foliar SOD activities to the untransformed maize plants. Within the segregating M6884 population 50% of the plants had elevated SOD activity (up to four times the activity of the untransformed controls) and 50% of the plants contained the product of the transgene. In untransformed plants grown at 25 degrees C and 18 degrees C, SOD activity was not detectable in mesophyll extracts. Similarly, increased foliar SOD activity in the M6884 transformed maize did not lead to detectable mesophyll SOD activity. Increased foliar KCN-insensitive SOD activities were accompanied by enhancement of monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities; enzymes which are localized exclusively in the leaf mesophyll tissues. Increased foliar SOD activity had no effect on the hydrogen peroxide, glutathione or ascorbate contents of the leaves. This suggests that increased recycling of reduced ascorbate was required to compensate for enhanced hydrogen peroxide production in transformed plants.  相似文献   

5.
Four phosphoprotein phosphatases, with the ability to act upon hydroxymethylglutaryl (HMG)-CoA reductase, phosphorylase, and glycogen synthase have been purified from rat liver cytosol through a process that involves DEAE-cellulose, aminohexyl-Sepharose-4B, and Bio-Gel A 1.5 m chromatographies. Protein phosphatase II (Mr 180,000) was the major enzyme (68%) with a very broad substrate specificity, showing similar activity toward the three substrates. Phosphatases I1 (Mr 180,000) and I3 (Mr 250,000) accounted for only 12 and 15% of the total activity, respectively, and they were also able to dephosphorylate the three substrates. In contrast, phosphatase I2 (Mr 200,000) showed only phosphorylase phosphatase activity with insignificant dephosphorylating capacity toward HMG-CoA reductase and glycogen synthase. Upon ethanol treatment at room temperature, the Mr of all phosphatases changed; protein phosphatases I2, I3, and II were brought to an Mr of 35,000, while phosphatase I1 was reduced to an Mr of 69,000. Glycogen synthase phosphatase activity was decreased in all four phosphatases. There was also a decrease in phosphatase I1 activity toward HMG-CoA reductase and phosphorylase as substrates. The HMG-CoA reductase phosphatase and phosphorylase phosphatase activities of phosphatases I2, I3, and II were increased after ethanol treatment. Each protein phosphatase showed a different optimum pH, which changed depending on the substrate. The four phosphatases increased their activity in the presence of Mn2+ and Mg2+. In general, Mn2+ was a better activator than Mg2+, and phosphatase I1 showed a stronger dependency on these cations than any other phosphatase. Phosphorylase was a competitive substrate in the HMG-CoA reductase phosphatase and glycogen synthase phosphatase reactions of protein phosphatases I1, I3, and II. HMG-CoA reductase was also able to compete with phosphorylase and glycogen synthase for phosphatase activity. Glycogen synthase phosphatase activity presented less inhibition in the low-Mr forms. A comparison has been made with other protein phosphatases previously reported in the literature.  相似文献   

6.
Starch, the most abundant storage carbohydrate in plants, has been a major feedstock for first‐generation biofuels. Growing fuel demands require, however, that the starch yields of energy crops be improved. Leaf starch is synthesised during the day and degraded at night to power nonphotosynthetic metabolism. Redox regulation has been associated with the coordination of the enzymes involved in starch metabolism, but neither the signals nor mechanisms that regulate this metabolism are entirely clear. In this work, the thioredoxin (Trx) f and m genes, which code for key enzymes in plastid redox regulation, were overexpressed from the plastid genome. Tobacco plants overexpressing Trx f, but not Trx m, showed an increase of up to 700% in leaf starch accumulation, accompanied by an increase in leaf sugars, specific leaf weight (SLW), and leaf biomass yield. To test the potential of these plants as a nonfood energy crop, tobacco leaves overexpressing Trx f were subjected to enzymatic hydrolysis, and around a 500% increase in the release of fermentable sugars was recorded. The results show that Trx f is a more effective regulator of photosynthetic carbon metabolism in planta than Trx m. The overexpression of Trx f might therefore provide a means of increasing the carbohydrate content of plants destined for use in biofuel production. It might also provide a means of improving the nutritional properties of staple food crops.  相似文献   

7.
The regulation of hydroxymethylglutaryl-CoA reductase in cultured cells   总被引:4,自引:0,他引:4  
Growth-stimulated synchronized cells exhibit a rapid increase in 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.88) activity prior to the onset of DNA synthesis. Under normal culture conditions, HMG-CoA reductase activity exhibits wide variations among experiments. To determine whether this phenomenon is dependent on cell replication, we used J774 macrophage-like cells to compare changes in reductase activity in cells synchronized by serum deprivation and then growth-stimulated by fresh media containing serum to unsynchronized cells treated with fresh media and serum. Under these conditions, no increase in [3H]thymidine incorporation into cell DNA was seen in unsynchronized cells, but a large increase was observed in synchronized cells 10-12 h after media change. Although the growth characteristics differed between the cells, reductase activity was low at the time of media change and increased 10 to 20-fold 5-10 h after media change, returning to basal levels by 24 h in both synchronized and unsynchronized cells. This pattern of reductase activity was observed in unsynchronized cells from a variety of cell lineages, although the magnitude of the changes varied. Fluctuations of [14C]acetate incorporation into cholesterol were observed in parallel to alterations in reductase activity. LDL receptor expression also paralleled the changes in reductase activity, but scavenger receptor expression was not affected. Addition of lipoproteins at the time of media change inhibited the rise in reductase activity by 80-90%. The increase in reductase activity was not due to a stimulation of cholesterol efflux into the medium, but evidence for the secretion into the media of an inhibitory factor was obtained. These results suggest that cell requirements for cholesterol are not always directly related to replication, and that standard culture conditions induce transient fluctuations in reductase activity and lipoprotein receptor expression.  相似文献   

8.
9.
The size of tissue amino acid pools in plants may indicate nitrogen status and provide a signal that can regulate nitrate uptake and assimilation. The effects of treating barley roots with glutamine have been examined, first to identify the transport system for the uptake of the amino acid and then to measure root NR activity and cellular pools of nitrate. Treating N replete roots with glutamine elicited a change in the cell membrane potential and the size of this response was concentration dependent. In addition, the size of the electrical change depended on the previous exposures of the root to glutamine and was lost after a few cycles of treatment. Whole root tissue pools of glutamine and phenylalanine increased when roots were incubated in a nutrient solution containing 10 mM nitrate and 1 mM glutamine. Treating roots with 1 mM glutamine increased cytosolic nitrate activity from 3 mM to 7 mM and this change peaked after 2 h of treatment. Parallel measurements of root nitrate reductase activity during treatment with 1 mM glutamine showed a decrease. These measurements provide evidence for feedback regulation on NR activity that result in changes in cytosolic nitrate activity. After 6 h in glutamine both root NR activity and cytosolic nitrate activity returned to pretreatment values, while tissue concentrations of glutamine and phenylalanine remained elevated. The data are discussed in terms of the mechanisms that are most likely to be responsible for the changes in cytosolic nitrate.  相似文献   

10.
11.
To determine the importance of glutathione reductase (GR, EC 1.6.4.2) for heavy metal accumulation and tolerance, a bacterial GR was expressed in Indian mustard ( Brassica juncea L.), targeted to the cytosol or the plastids. GR activity in the cytosolic transgenics (cytGR) was about two times higher compared to wild-type plants; in the plastidic transgenics (cpGR) the activity was up to 50 times higher. When treated with 100 μ M CdSO4, cytGR plants did not differ from wild type in cadmium tolerance or accumulation. CpGR plants, however, showed enhanced cadmium tolerance at the chloroplast level: in contrast to wild-type plants they showed no chlorosis, and their chlorophyll fluorescence parameters Fv/Fm and photochemical quenching were higher. Cadmium tolerance at the whole-plant level (plant growth) was not affected. The lower cadmium stress experienced by the cpGR chloroplasts may be the result of reduced cadmium uptake and/or translocation: cadmium levels in shoots of cpGR plants were half as high as those in wild-type shoots. These differences in cadmium tolerance and accumulation may result from increased root glutathione levels, which were up to two times higher in cpGR plants than in the wild type.  相似文献   

12.
The activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), obtained from cultured human IM-9 lymphoid cells or freshly isolated human peripheral blood leukocytes, is modulated by a phosphorylation/dephosphorylation mechanism. Addition of MgATP + ADP to IM-9 cell microsomal reductase leads to a time-dependent loss of enzyme activity. Inactivated reductase is reactivated by rat liver reductase phosphatase. Kinase-dependent IM-9 cell microsomal reductase, prepared by heating IM-9 microsomes for 15 min at 50°C, is inactivated in the presence of MgATP and ADP only after addition of cytosolic reductase kinase from either IM-9 cells, freshly isolated leukocytes or rat liver. Inactivation is time-dependent and dependent on the cytosolic protein concentration. Inactivated reductase is reactivated by rat liver reductase phosphatase. For cultured IM-9 cells and freshly isolated leukocytes incubated with culture medium for 2 h, the ratios of active (unphosphorylated) to total (phosphorylated + unphosphorylated) reductase activity are 0.22 and 0.43, respectively. Thus, in addition to its regulation by changes in the amount of total enzyme protein, human leukocyte reductase activity is also modulated by a phosphorylation/dephosphorylation mechanism.  相似文献   

13.
14.
15.
16.
A poplar hybrid, Populus tremula x Populus alba, was transformed with the bacterial genes for either glutathione reductase (GR) (gor) or glutathione synthetase (GS) (gshII). When the gor gene was targeted to the chloroplasts, leaf GR activities were up to 1000 times greater than in all other lines. In contrast, targeting to the cytosol resulted in 2 to 10 times the GR activity. GR mRNA, protein, and activity levels suggest that bacterial GR is more stable in the chloroplast. When the gshII gene was expressed in the cytosol, GS activities were up to 100 times greater than in other lines. Overexpression of GR or GS in the cytosol had no effect on glutathione levels, but chloroplastic-GR expression caused a doubling of leaf glutathione and an increase in reduction state. The high-chloroplastic-GR expressors showed increased resistance to photoinhibition. The herbicide methyl viologen inhibited CO2 assimilation in all lines, but the increased leaf levels of glutathione and ascorbate in the high-chloroplastic-GR expressors persisted despite this treatment. These results suggest that overexpression of GR in the chloroplast increases the antioxidant capacity of the leaves and that this improves the capacity to withstand oxidative stress.  相似文献   

17.
18.
Zhang C  Liu J  Zhang Y  Cai X  Gong P  Zhang J  Wang T  Li H  Ye Z 《Plant cell reports》2011,30(3):389-398
GDP-Mannose 3′,5′-epimerase (GME; EC 5.1.3.18) catalyses the conversion of GDP-d-mannose to GDP-l-galactose, an important step in the ascorbic acid (AsA) biosynthesis pathway in higher plants. In this study, two members of the GME gene family were isolated from tomato (Solanum lycopersicum). Both SlGME genes encode 376 amino acids and share a 92% similarity with each other. Semi-quantitative RT-PCR indicated that SlGME1 was constantly expressed in various tissues, whereas SlGME2 was differentially expressed in different tissues. Transient expression of fused SlGME1-GFP (green fluorescent protein) and SlGME2-GFP in onion cells revealed the cytoplasmic localisation of the two proteins. Transgenic plants over-expressing SlGME1 and SlGME2 exhibited a significant increase in total ascorbic acid in leaves and red fruits compared with wild-type plants. They also showed enhanced stress tolerance based on less chlorophyll content loss and membrane-lipid peroxidation under methyl viologen (paraquat) stress, higher survival rate under cold stress, and significantly higher seed germination rate, fresh weight, and root length under salt stress. The present study demonstrates that the overexpression of two members of the GME gene family resulted in increased ascorbate accumulation in tomato and improved tolerance to abiotic stresses.  相似文献   

19.
20.
Merret R  Cirioni J  Bach TJ  Hemmerlin A 《FEBS letters》2007,581(27):5295-5299
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is unique in the first part of the cytoplasmic isoprenoid pathway, as it contains a membrane domain that includes ER-specific retention motifs. When fused to GFP, this domain targets two tobacco BY-2 HMGR isoforms differentially. While the first isoform is ER-localized, a second stress-induced one forms globular structures connected by tubular structures. A serine positioned upstream of the ER retention motif seems to be implicated in this specific subcellular localization. Surprisingly, these structures are closely connected to F-actin, and their intactness is dependent upon the integrity of the filaments or the action of a calmodulin antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号