首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The human major histocompatibility complex contains the genes for at least three different types of class II antigens, DR, DC and SB (DR, DQ and DP). They are all composed of an alpha and a beta chain. We have cloned a chromosomal region of 70 kb containing the SB (DP) gene family in overlapping cosmid clones. This segment contains two alpha genes and two beta genes, located in the order SB alpha 1, SB beta 1, SB alpha 2 and SB beta 2. The orientation of the alpha genes is reversed compared with that of the beta genes. This organisation suggests that the SB region has arisen by duplication of a chromosomal segment encompassing one alpha and one beta gene. Partial nucleotide sequences of the SB alpha 1 and SB beta 1 exons demonstrate that the genes correspond to SB alpha and beta cDNA clones. Consequently these genes are expressed. In contrast nucleotide sequence determination of the SB alpha 2 gene shows that it is a pseudogene.  相似文献   

2.
The DP subregion of the human major histocompatibility complex contains two closely linked gene pairs, DP alpha, DP beta and SX alpha, SX beta. The exon-intron organization and the complete DNA sequence of the SX alpha gene are reported here. There are several mutations within the SX alpha gene which strongly suggest that it is a pseudogene. These include two frameshift mutations, one in the alpha 1 domain and the other in the cytoplasmic domain. A 5' splice site mutation at the end of the alpha 1 exon also exists. DNA sequence homology between DP alpha and SX alpha suggests that these genes arose through a gene duplication event.  相似文献   

3.
A novel class II beta chain gene is described. This gene, tentatively called DO beta, displays considerably less polymorphism than beta genes of the DP, DQ, and DR loci. The nucleotide sequence of the DO beta gene is strikingly similar to that of the previously identified murine A beta 2 gene. The DO beta gene displays the same exon/intron organization as other beta genes although the fifth exon and the translated portion of the sixth exon are longer than in other genes. A striking feature of the amino acid sequence deduced from the DO beta gene sequence is the pronounced hydrophobicity of the NH2-terminal region. This feature distinguishes the putative DO beta chain from other class II beta chains and raises the possibility that DO beta chains may interact with an alpha chain that is structurally different from those of the DP, DQ, and DR loci. It further suggests that the putative DO molecule may have a function different from those of other class II antigens.  相似文献   

4.
The complete nucleotide sequence of an HLA-DP beta 1 gene and part of the adjacent DP alpha 1 gene, up to and including the signal sequence exon, were determined. The sequence of the DP beta 1 gene identified it as the DPw4 allele. The six exons of the DP beta 1 gene spanned over 11,000 bp of sequence. The arrangement of the gene was broadly analogous to genes of other class II beta chains. The beta 1 exon was flanked by introns of over 4 kb. Comparisons with published sequences of cDNA clones indicated that an alternative splice junction, at the 3' end of the gene, is used in at least one allele. Variation in choice of splice junction indicates an additional mechanism for allelic variation in class II genes. The sequence also indicated that the DP beta 1 and DP alpha 1 genes are separated by only 2 kb at their 5' ends. Comparison of the 5' ends of the DP alpha 1 and beta 1 genes with other class II sequences, including the DZ alpha gene, showed conservation of several blocks of sequences thought to be involved in control of expression. Some areas of the introns were partially conserved in the DQ beta gene, and several other intron sequences were homologous to sequences found in other unrelated genes.  相似文献   

5.
The HLA-D region of the human major histocompatibility complex encodes the genes for the alpha and beta chains of the DP, DQ and DR class II antigens. A cDNA clone encoding a new class II beta chain (designated DO) was isolated from a library constructed from mRNA of a mutant B-cell line having a single HLA haplotype. Complete cDNA clones encoding the four isotypic beta chains of the DR1, DQw1, DPw2 and putative DO antigens were sequenced. The DO beta gene was mapped in the D region by hybridization with DNA of HLA-deletion mutants. DO beta mRNA expression is low in B-cell lines but remains in mutant lines which have lost expression of other class II genes. Unlike other class II genes DO beta is not induced by gamma-interferon in fibroblast lines. The DO beta gene is distinct from the DP beta, DQ beta and DR beta genes in its pattern of nucleotide divergence. The independent evolution and expression of DO beta suggest that it may be part of a functionally distinct class II molecule.  相似文献   

6.
The human major histocompatibility complex, HLA, contains the genes of several class II molecules. We present here the molecular maps of the DQ and DX subregions and analyze the sequences of the polymorphic DQ alpha and DQ beta genes as well as the DX alpha and DX beta genes. The DQ alpha and DQ beta genes are oriented in opposite directions, approximately 12 kilobases apart. The DX alpha and DX beta genes are similarly oriented about 8 kilobases. The exon-intron organizations of the DQ alpha and DX alpha genes are analogous to those of other class II alpha genes. Comparison of the DQ alpha gene sequence to three DQ alpha cDNA clones shows that amino acid replacements are predominantly located between residues 45 and 80 in the amino-terminal domain. Analysis of the frequency of silent and replacement substitutions indicates that there is little selection against replacements in DQ alpha first domains. The exons encoding the second domains of DQ alpha and DX alpha are virtually identical, suggesting that a gene conversion event has occurred between these genes. The DX beta gene is very similar to the DQ beta gene but differs in the cytoplasmic portion. The DX beta gene contains a separate exon of 24 nucleotides encoding the core of the cytoplasmic tail. This exon is not expressed in the DQ beta genes due to a nonfunctional splice junction. Comparison of the number of nucleotide substitutions in the DQ beta first and second domain exons suggests that little or no phenotypic selection acts on the first domain whereas the second domain is under strong selection.  相似文献   

7.
The class II region of the major histocompatibility complex (Smh) in the mole rat, Spalax ehrenbergi, consists of only two gene families, P and Q, instead of the four families (P, O, Q, and R) found in all other mammals studied to date. The Spalax P family consists of at least four beta and three alpha genes or gene fragments. In DNA-hybridization experiments, two of the beta genes behave as bona fide P-family members in that they hybridize strongly with human DP beta probes and hybridize weakly with probes specific for other class II gene families. The other two beta genes, on the other hand, hybridize weakly with human DP beta probes and nearly as well with human DQ beta probes. To determine the evolutionary relationships among these P-like genes, we have sequenced one of them. The sequence reveals, on the basis of its organization, that the gene clearly belongs to the P family, yet, on the basis of its nucleotide sequence, it is only slightly more similar to human DP than to human DQ genes. These results indicate that in the Spalax the P family of genes split into two subfamilies, PA and PB. For unknown reasons, one of these subfamilies (PB) retained more similarity to the Q gene family than did the other (PA).  相似文献   

8.
The major histocompatibility complex (MHC) class II molecule consists of noncovalently associated alpha and beta chains. In mammals studied so far, the class II MHC can be divided into a number of regions, each containing one or more alpha-chain genes (A genes) and beta-chain genes (B genes), and it has been known for some time that orthologous relationships exist between genes in corresponding regions from different mammalian species. A phylogenetic analysis of DNA sequences of class II A and B genes confirmed these relationships; but no such orthologous relationship was observed between the B genes of mammals and those of birds. Thus, the class II regions have diverged since the separation of birds and mammals (approximately 300 Mya) but before the radiation of the placental mammalian orders (60-80 Mya). Comparison of the phylogenetic trees for A and B genes revealed an unexpected characteristic of DP-region genes: DPB genes are most closely related to DQB genes, whereas DPA chain genes are most closely related to DRA-chain genes. Thus, the DP region seems to have originated through a recombinational event which brought together a DQB gene and a DRA gene (perhaps approximately 120 Mya). The 5' untranslated region of all class II genes includes sequences which are believed to be important in regulating class II gene expression but which are not conserved in known pseudogenes. These sequences are conserved to an extraordinary degree in the human DQB1 gene and its mouse homologue A beta 1, suggesting that regulation of expression of this locus may play a key role in expression of the entire class II MHC.  相似文献   

9.
Class II major histocompatibility complex genes of the sheep   总被引:2,自引:0,他引:2  
The class II genes of the sheep major histocompatibility complex (MHC) have been cloned from two unrelated heterozygous sheep into cosmid vectors. By restriction mapping and hybridization with a number of class II probes of human and mouse origin, the cloned genetic material has been assigned to seven distinct alpha genes, 10 distinct beta genes and 14 beta-related sequences. It was difficult to identify homologues of specific HLA class II genes because of a tendency for the ovine genes to cross-hybridize between HLA probes representing different loci. Such cross-hybridization was especially marked among the beta genes. While DQ and DR homologues have been tentatively identified by several criteria, no genes corresponding to DP have been identified. Cosmids containing class II alpha and beta genes have been transfected into mouse LTK- cells, and surface expression of a sheep class II molecule has been obtained.  相似文献   

10.
To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC) genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed), of which 10 are classical class II genes (1 DRA, 2 DRB, 2 DQA, 3 DQB, 1 DYB, 1 DPA, and 2 DPB) and 4 are non-classical class II genes (1 DOA, 1 DOB, 1 DMA, and 1 DMB). The presence of DYB, a gene specific to ruminants, prompted a comparison of the giant panda class II sequence with those of humans, cats, dogs, cattle, pigs, and mice. The results indicated that birth and death events within the DQ and DRB-DY regions led to major lineage differences, with absence of these regions in the cat and in humans and mice respectively. The phylogenetic trees constructed using all expressed alpha and beta genes from marsupials and placental mammals showed that: (1) because marsupials carry loci corresponding to DR, DP, DO and DM genes, those subregions most likely developed before the divergence of marsupials and placental mammals, approximately 150 million years ago (MYA); (2) conversely, the DQ and DY regions must have evolved later, but before the radiation of placental mammals (100 MYA). As a result, the typical genomic structure of MHC class II genes for the giant panda is similar to that of the other placental mammals and corresponds to BTNL2∼DR1∼DQ∼DR2∼DY∼DO_box∼DP∼COL11A2. Over the past 100 million years, there has been birth and death of mammalian DR, DQ, DY, and DP genes, an evolutionary process that has brought about the current species-specific genomic structure of the MHC class II region. Furthermore, facing certain similar pathogens, mammals have adopted intra-subregion (DR and DQ) and inter-subregion (between DQ and DP) convergent evolutionary strategies for their alpha and beta genes, respectively.  相似文献   

11.
Human DNA topoisomerase II is essential for chromosome segregation and is the target for several clinically important anticancer agents. It is expressed as genetically distinct alpha and beta isoforms encoded by the TOP2alpha and TOP2beta genes that map to chromosomes 17q21-22 and 3p24, respectively. The genes display different patterns of cell cycle- and tissue-specific expression, with the alpha isoform markedly upregulated in proliferating cells. In addition to the fundamental role of TOP2alpha and TOP2beta genes in cell growth and development, altered expression and rearrangement of both genes are implicated in anticancer drug resistance. Here, we report the complete structure of the human topoisomerase IIalpha gene, which consists of 35 exons spanning 27.5 kb. Sequence data for the exon-intron boundaries were determined and examined in the context of topoisomerase IIalpha protein structure comprising three functional domains associated with energy transduction, DNA breakage-reunion activity and nuclear localization. The organization of the 3' half of human TOP2beta, including sequence specifying the C-terminal nuclear localization domain, was also elucidated. Of the 15 introns identified in this 20 kb region of TOP2beta, the first nine and the last intron align in identical positions and display the same phases as introns in TOP2alpha. Though their extreme 3' ends differ, the striking conservation suggests the two genes diverged recently in evolutionary terms consistent with a gene duplication event. Access to TOP2alpha and TOP2beta gene structures should aid studies of mutations and gene rearrangements associated with anticancer drug resistance.  相似文献   

12.
Genomic clones which link the goat preadult (beta C) and adult (beta A) beta-globin genes have been isolated. These overlapping clones contain a previously unidentified embryonic like globin gene (epsilon III) and establish the following linkage map of eight genes in the goat beta-globin locus: epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A. This linkage map and the nucleotide sequence of the eight genes document a relatively recent duplication of a four-gene set: epsilon-epsilon-psi beta-beta. This duplication produced two genes (beta C and beta A) which are now expressed differentially during development. An embryonic like globin gene located downstream from beta A has also been isolated. The embryonic nature of this gene as well as the adult beta-like sequence of the goat fetal globin gene (gamma) suggest that a duplication of the four-gene set also produced the globin gene now expressed during fetal development.  相似文献   

13.
Southern blot analysis of genomic cattle DNA was carried out using murine cDNA probes representing the Tcp-1 gene of the t complex. Excellent cross-hybridization was obtained, and the probes apparently hybridized to at least two bovine TCP1 genes. Two independent restriction fragment length polymorphisms, each composed of two allelic variants, were detected; the inheritance of the restriction fragment length polymorphisms was confirmed by family data. One of the restriction fragment length polymorphisms, designated TCP1B, was evidently due to a gene duplication and was revealed with any restriction enzyme used. The duplication was found in three different cattle breeds investigated. Family segregation data indicated that TCP1B is linked to major histocompatibility complex genes. The result was consistent with close linkage to the major histocompatibility complex class II DO beta gene, whereas a fairly high recombination frequency was indicated between TCP1B/DO beta and other major histocompatibility complex genes. The result assigns TCP1B to a bovine linkage group previously comprising major histocompatibility complex class I and class II genes and blood group locus M. The similarity between this linkage group and parts of mouse chromosome 17 (t-H-2) and human chromosome 6 (TCP1-HLA) is discussed.  相似文献   

14.
The genes of the polymorphic HLA-DR molecules are located within the human major histocompatibility complex. We have studied the HLA-DR genes of an HLA homozygous individual typed to be DR4, Dw4, and DRw53. Fourteen cosmid and phage clones from genomic libraries were isolated and grouped into three clusters comprising a total of 165 kilobases. These clusters contain four DR beta genes. Nucleotide sequence determination showed that two of the genes encode beta chains that carry the DR4 and DRw53 specificities, respectively, while the other two genes are presumably pseudogenes. Comparisons of the nucleotide sequences of all four DR beta genes of the DR4 haplotype show that the genes are extensively similar, approximately 90% in both exons and introns. All four genes are equally similar to each other. These observations are consistent with the notion that the genes arose by duplications that were followed by homogenization through gene conversion. The existence of more than one DR beta gene homologue but only a single DR alpha gene homologue in mouse, rabbit, and cattle suggests that the DR beta gene duplications occurred at or early during mammalian speciation.  相似文献   

15.
16.
The major histocompatibility complex (MHC) class II DRB, DQB, DPB, and DOB gene clusters are shared by different eutherian orders. Such an orthologous relationship is not seen between the beta genes of birds and eutherians. A high degree of uncertainty surrounds the evolutionary relationship of marsupial class II beta sequences with eutherian beta gene families. In particular, it has been suggested that marsupials utilize the DRB gene cluster. A cDNA encoding an MHC class II beta molecule was isolated from a brushtail possum mesenteric lymph node cDNA library. This clone is most similar to Macropus rufogriseus DBB. Our analysis suggests that all known marsupial beta-chain genes, excluding DMB, fall into two separate clades, which are distinct from the eutherian DRB, DQB, DPB, or DOB gene clusters. We recommend that the DAB and DBB nomenclature be reinstated. DAB and DBB orthologs are not present in eutherians. It appears that the marsupial and eutherian lineages have retained different gene clusters following gene duplication events early in mammalian evolution.  相似文献   

17.
We have determined the complete nucleotide sequence of the two nonallelic adult beta-globin genes of the C57BL/10 mouse. These genes, designated beta s and beta t, show a sequence similarity of 99.6% over the region bordered by the translational start and stop codons. Both beta s and beta t encode functional polypeptide chains that are identical. A comparison of the C57BL/10 beta-globin haplotype, Hbbs, with that of the BALB/c mouse, Hbbd, suggests that the two haplotypes have distinct evolutionary histories. The two adult beta-globin genes of the Hbbd haplotype, beta dmaj and beta dmin, are 16% divergent at the nucleotide level and encode distinct polypeptides that are synthesized in differing amounts. Our analysis indicates that a gene correction mechanism has been operating on the Hbbs chromosome to keep beta s and beta t evolving in concert, whereas on the Hbbd chromosome, beta dmin has diverged considerably from beta dmaj. We suggest that gene conversion is responsible for the maintained similarity of the Hbbs genes. Furthermore, we attribute the divergence of the Hbbd genes in part to the absence of a region of simple-sequence DNA within the large intervening sequence of beta dmin. We propose that this region of DNA plays a role in facilitating gene conversion. The deletion of this area in beta dmin introduced a block of nonhomology between the beta dmaj-beta dmin gene pair and thus may have inhibited further gene correction within the Hbbd haplotype.   相似文献   

18.
Moraxella bovis Epp63 can express either of two different pilin proteins, called alpha and beta. We have previously cloned and sequenced the beta-pilin gene and now report that DNAs isolated from bacteria expressing alpha pilin have hybridization patterns consistently different from those of bacteria expressing beta pilin. The phase variation between alpha- and beta-pilin gene expression appears to be associated with an inversion of about 2 kilobases of DNA, whose endpoints occur within the coding region of the expressed pilin gene. Comparisons of the beta-pilin gene sequence with those of well-studied bacterial inversion systems revealed a stretch of 58% sequence similarity (21 of 36 base pairs) between the left inverted repeat of the Salmonella typhimurium flagellar hin control region and the amino-terminal portion of the beta-pilin gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号