首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monoclonal antibodies (MAbs) were produced against white spot syndrome virus (WSSV) of penaeid shrimp. The virus isolate used for immunization was obtained from China in 1994 and was passaged in Penaeus vannamei. The 4 hybridomas selected for characterization all produced MAbs that reacted with the 28 kD structural protein by Western blot analysis. The MAbs tested in dot-immunoblot assays were capable of detecting the virus in hemolymph samples collected from moribund shrimp during an experimentally induced WSSV infection. Two of the MAbs were chosen for development of serological detection methods for WSSV. The 2 MAbs detected WSSV infections in fresh tissue impression smears using a fluorescent antibody for final detection. A rapid immunohistochemical method using the MAbs on Davidson's fixed tissue sections identified WSSV-infected cells and tissues in a pattern similar to that seen with digoxigenin-labeled WSSV-specific gene probes. A whole mount assay of pieces of fixed tissue without paraffin embedding and sectioning was also successfully used for detecting the virus. None of the MAbs reacted with hemolymph from specific pathogen-free shrimp or from shrimp infected with infectious hypodermal and hematopoietic necrosis virus, yellow head virus or Taura syndrome virus. In Western blot analysis, the 2 MAbs did not detect any serological differences among WSSV isolates from China, Thailand, India, Texas, South Carolina or Panama. Additionally, the MAbs did not detect a serological difference between WSSV isolated from penaeid shrimp and WSSV isolated from freshwater crayfish.  相似文献   

2.
Variable genomic loci were examined in 4 white spot syndrome virus (WSSV) isolates (08HB, 09HB, 08JS and 09JS) from Procambarus clarkii crayfish collected from Jiangsu and Hubei Provinces in China in 2008 and 2009. In ORF75, sequence variation detected in the 4 isolates, as well as in isolates sequenced previously, suggested that WSSV might have segregated into 2 lineages since first emerging as a serious pathogen of farmed shrimp in East Asia in the early-mid 1990s, with one lineage remaining in East Asia and the other separating to South Asia. In ORF23/24, deletions of 9.31, 10.97, or 11.09 kb were evident compared to a reference isolate from Taiwan (WSSV-TW), and, in ORF14/15, deletions of 5.14 or 5.95 kb were evident compared to a reference isolate from Thailand with the largest genome size (TH-96-II). With respect to these genome characteristics, the crayfish isolates 08HB, 09HB and 08JS were similar to WSSV-TW and the isolate 09JS was similar to a reference isolate from China (WSSV-CN). In addition to these loci, sequence variation was evident in ORF94 and ORF125 that might be useful for differentiating isolates and in epidemiological tracing of WSSV spread in crayfish farmed in China. However, as all 4 crayfish isolates possessed a Homologous Region 9 sequence identical to isolate WSSV-TW and another Thailand isolate (WSSV-TH), and as their transposase sequence was identical to isolates WSSV-CN and WSSV-TH, these 2 loci were not useful in predicting their origins.  相似文献   

3.
A standardized inoculation model was used in 2 separate experiments to gauge the virulence of 3 white spot syndrome virus (WSSV) isolates from Thailand and Vietnam (WSSV Thai-1, WSSV Thai-2, and WSSV Viet) in Penaeus vannamei juveniles. Mortality patterns (Expt 1) were compared and WSSV-positive cells quantified (Expt 2) in tissues following intramuscular inoculation of shrimp with the most (WSSV Thai-1) and least (WSSV Viet) virulent isolates as determined by Expt 1. The results of Expt 1 demonstrated that mortalities began at 36 h post inoculation (hpi) for both Thai isolate groups and at 36 to 60 hpi for the Viet isolate group. Cumulative mortality reached 100% 96 to 240 h later in shrimp challenged with the WSSV Viet isolate compared to shrimp challenged with the Thai isolates. WSSV infection was verified in all groups by indirect immunofluorescence. In Expt 2, WSSV-infected cells were quantified by immunohistochemical analysis of both dead and time-course sampled shrimp. WSSV-positive cells were detected in tissues of Thai-1 inoculated dead and euthanized shrimp from 24 hpi onwards and from 36 hpi onwards in shrimp injected with the Viet isolate. Significantly more infected cells were found in tissues of dead shrimp inoculated with the Thai-1 than in Viet isolate-inoculated shrimp. In these experiments, substantial differences in virulence were demonstrated between the WSSV isolates. The Vietnamese isolate induced a more chronic disease and mortality pattern than was found for the Thai isolates, possibly because it infected fewer cells. This difference was most pronounced in gills.  相似文献   

4.
A cDNA library was constructed from white spot syndrome virus (WSSV)-infected penaeid shrimp tissue. cDNA clones with WSSV inserts were isolated and sequenced. By comparison with DNA sequences in GenBank, cDNA clones containing sequence identical to those of the WSSV envelope protein VP28 and nucleoprotein VP15 were identified. Poly(A) sites in the mRNAs of VP28 and VP15 were identified. Genes encoding the major viral structural proteins VP28, VP26, VP24, VP19 and VP15 of 5 WSSV isolates collected from different shrimp species and/or geographical areas were sequenced and compared with those of 4 other WSSV isolate sequences in GenBank. For each of the viral structural protein genes compared, the nucleotide sequences were 100 to 99% identical among the 9 isolates. Gene probes or PCR primers based on the gene sequences of the WSSV structural proteins can be used for diagnoses and/or detection of WSSV infection.  相似文献   

5.
A real-time PCR method was developed to detect monodon baculovirus (MBV) in penaeid shrimp. A pair of MBV primers to amplify a 135 bp DNA fragment and a TaqMan probe were developed. The primers and TaqMan probe were specific for MBV and did not cross react with Hepatopancreatic parvovirus (HPV), White spot syndrome virus (WSSV), Infectious hypodermal and haematopoietic virus (IHHNV) and specific pathogen free (SPF) shrimp DNA. A plasmid (pMBV) containing the target MBV sequence was constructed and used for determination of the sensitivity of the real-time PCR. This real-time PCR assay had a detection limit of one plasmid MBV DNA copy. Most significantly, this real-time PCR method can detect MBV positive samples from different geographic locations in the University of Arizona collection, including Thailand and Indonesia collected over a 13-year period.  相似文献   

6.
As one of the major pathogens, hepatopancreatic parvovirus (HPV) can cause severe diseases in penaeid shrimp. We developed a TaqMan-based real-time PCR assay for the HPV detection in China. A pair of primers (HPVF and HPVR) and a TaqMan probe were designed according to the HPV genomic sequence of Chinese isolate (GenBank: GU371276). Our data showed that the primers and TaqMan probe were specific for HPV, and they exhibited no cross-reaction with infectious hypodermal and hematopoietic necrosis virus (IHHNV), white spot syndrome virus (WSSV) and specific pathogen free (SPF) shrimp DNA. The assay had a detection limit of four plasmid HPV DNA copies per reaction. Furthermore, HPV was detected in 16 of 21 Fenneropenaeus Chinensis, 3 of 52 Litopenaeus vannamei and 2 of 2 Marsupenaeus japonicus penaeid shrimp samples. In addition, HPV was also detected in crabs. Therefore, this assay could be successfully used as a sensitive and rapid molecular-based diagnostic method to screen HPV-free animals and survey the prevalence of HPV in cultured populations of penaeid shrimp in China.  相似文献   

7.
8.
9.
Despite almost two decades since its discovery, White Spot Disease (WSD) caused by White Spot Syndrome Virus (WSSV) is still considered the most significant known pathogen impacting the sustainability and growth of the global penaeid shrimp farming industry. Although most commonly associated with penaeid shrimp farmed in tropical regions, the virus is also able to infect, cause disease and kill a wide range of other decapod crustacean hosts from temperate regions, including lobsters, crabs, crayfish and shrimp. For this reason, WSSV has recently been listed in European Community Council Directive 2006/88. Using principles laid down by the European Food Safety Authority (EFSA) we applied an array of diagnostic approaches to provide a definitive statement on the susceptibility to White Spot Syndrome Virus (WSSV) infection in seven ecologically or economically important crustacean species from Europe. We chose four marine species: Cancer pagurus, Homarus gammarus, Nephrops norvegicus and Carcinus maenas; one estuarine species, Eriocheir sinensis and two freshwater species, Austropotamobius pallipes and Pacifastacus leniusculus. Exposure trials based upon natural (feeding) and artificial (intra-muscular injection) routes of exposure to WSSV revealed universal susceptibility to WSSV infection in these hosts. However, the relative degree of susceptibility (measured by progression of infection to disease, and mortality) varied significantly between host species. In some instances (Type 1 hosts), pathogenesis mimicked that observed in penaeid shrimp hosts whereas in other examples (Types 2 and 3 hosts), infection did not readily progress to disease, even though hosts were considered as infected and susceptible according to accepted principles. Results arising from challenge studies are discussed in relation to the potential risk posed to non-target hosts by the inadvertent introduction of WSSV to European waters via trade. Furthermore, we highlight the potential for susceptible but relatively resistant hosts to serve as models to investigate natural mitigation strategies against WSSV in these hosts. We speculate that these non-model hosts may offer a unique insight into viral handling in crustaceans.  相似文献   

10.
In Korea, mass mortality occurred among cultured shrimp with visible macroscopic white spots in 2000, and we confirmed the presence of white spot syndrome virus (WSSV) in the tissues of moribund shrimp by electron microscopy. In order to identify the characteristics of this Korean isolate of WSSV, we cloned and characterized its genomic DNA coding for VP24, VP26, and VP28. On the nucleotide level, VP24, VP26, and VP28 of the Korean isolate were found to be 100%, 100%, and 99% identical to those of Taiwan, Thailand and Chinese isolates, respectively. On the deduced amino-acid level, all 3 virion proteins showed 100% identity to those of the foreign isolates. The extent of sequence identity suggests that the Korean isolate originated from the same ancestor as the Taiwanese, Thai and Chinese isolates.  相似文献   

11.
The signal freshwater crayfish Pacifastacus leniusculus was found to be susceptible to infection with white spot syndrome virus (WSSV). Histopathological observations of various tissues of virus-injected crayfish showed similar symptoms to those from WSSV-infected penaeid shrimp, but no appearance of white spots on the cuticle or reddish body colour were observed, although these are the prominent gross signs of white spot disease in shrimp. A gene probe for detecting WSSV was developed in order to detect the virus in affected cells and tissues using in situ hybridisation. Strong signals were observed in cells of virus-injected crayfish, but not in control-injected crayfish. The number of granular haemocytes in virus-injected crayfish was significantly higher than in sham-injected and non-injected crayfish from Days 5 to 8 (p < or = 0.05) and Days 3 to 8 (p < 0.01) post-injection, respectively. The proportion of granular haemocytes in virus-injected crayfish was also significantly higher than in sham-injected controls from Days 3 to 8 (p < 0.01). These results indicate that WSSV has a significant effect on the proportion of different haemocyte types in the freshwater crayfish.  相似文献   

12.
White spot syndrome virus (WSSV) presently causes the most serious losses to shrimp farmers worldwide. Earlier reports of high DNA sequence homology among isolates from widely separated geographical regions suggested that a single virus was the cause. However, we have found surprisingly high variation in the number of 54 bp DNA repeats in ORF94 (GenBank AF369029) from 55 shrimp ponds (65 shrimp samples) experiencing WSSV outbreaks in Thailand in 2000 and 2002. These were detected by PCR amplification using primers ORF94-F and ORF94-R flanking the repeat region. Altogether, 12 different repeat groups were found (from 6 to 20 repeats) with 8 repeats being most frequent (about 32%). Extracts prepared from individual shrimp in the same outbreak pond belonged to the same repeat group while those collected at the same time from separate WSSV outbreak ponds, or from the same ponds at different times, usually belonged to different repeat groups. This suggested that different outbreaks were caused by different WSSV isolates. In contrast to the highly variable numbers of repeats, sequence variation within the repeat region was confined to either T or G at Position 36. These variations may be useful for epidemiological studies on the local and global movement of WSSV, since there is high variation in the number of repeats (good for local studies) but little sequence change (good for global studies).  相似文献   

13.
A segment of Madagascar hepatopancreatic parvovirus (HPV) genomic sequence (5742 nucleotides) was determined through PCR and direct sequencing. This nucleotide sequence was compared to isolates from Australia, Thailand, Korea, and Tanzania, and the mean distance was determined to be 17%. The Madagascar HPV is closest to the Tanzania isolate (12%), followed by isolates from Korea (15%), Australia (17%) and Thailand (20%). Analysis of the genomic structure revealed that this HPV sequence is comprised of one partial Left open reading frame (ORF) (349 amino acids, aa) and complete Mid (578 aa) and Right (820 aa) ORFs. The amino acid sequences of the 3 ORFs were compared among isolates. The Right ORF was found to have the highest variation with a mean distance of 24%. This was followed by the Left and Mid ORF with distances of 13 and 7%, respectively. A phylogenetic analysis based on the amino acid sequence of the Right ORF divides 7 HPV isolates into 3 well-separated groups: Korea, Thailand, and Australia. The Madagascar HPV clustered with the Korea and Tanzania isolates. In Madagascar, HPV has been detected by histological examination since the 1990s. PCR analysis of a recent (2007) sampling showed a 100% prevalence. HPV was also detected in Mozambique with a 100% prevalence. High (95%) prevalence of HPV was found in wild Penaeus merguinesis collected from New Caledonia. These results indicate that HPV displays a high degree of genetic diversity and is distributed worldwide among populations of penaeid shrimp.  相似文献   

14.
A rapid and reliable polymerase chain reaction (PCR) method was developed for the detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in penaeid shrimp. The oligonucleotide primers amplify a 1681-bp fragment of IHHNV, which encompasses the coding sequence for one of the viral coat proteins. The PCR method detects IHHNV in hemolymph and homogenized tissue obtained from the cephalothorax or pleopods of infected shrimp. The technique was also successfully applied to tissue samples preserved in 70% ethanol. The correct size fragment was amplified using IHHNV obtained from six different geographic regions in three different species of penaeid shrimp. No DNA extraction method was necessary for this technique. The use of hemolymph or pleopods provides a nondestructive screening method by which to test juveniles and adult broodstock for the presence of IHHNV. Received September 21, 1999; accepted January 21, 2000  相似文献   

15.
Since our first report in 1998, white spot syndrome virus (WSSV) has become wide-spread on the southern and western coasts of Korea. Almost all shrimp in ponds die within 3 to 4 d after the first dead shrimp are observed with gross lesions ranging from abnormal red body discoloration to white spots in the cuticle. From one isolate, we cloned and sequenced WSSV genomic DNA coding for VP19 and VP28 envelope proteins and VP15 and VP35 nucleocapsid proteins. Putative protein sequences were submitted to GenBank and assigned accession numbers AY316119 (VP19), AY324881 (VP28), AY374120 (VP15) and AY325896 (VP35). At the nucleotide level, VP19, VP28 and VP15 sequences were, respectively, 99, 100 and 100% identical to those of China, Indonesia, Japan and the United States and the VP35 sequence was 100% identical to that of a Taiwanese isolate. The deduced amino-acid sequences were 99 to 100% identical to those from other countries. In VP19, C and T in the foreign isolates were replaced by T and A in the Korean isolate at Positions 57 and 218 nt, respectively, downstream of A (+) of the VP19 start codon. The change at Position 218 nt resulted in valine in the foreign isolates being replaced by aspartate in the Korean isolate.  相似文献   

16.
对虾白斑综合征杆状病毒体内增殖模型的建立   总被引:3,自引:0,他引:3  
应用对虾白斑综合征杆状病毒(WSSV),对淡水克氏螯虾、罗氏沼虾、日本沼虾和两种淡水蟹(中华绒螯蟹、长江华溪蟹)进行人工感染实验。结果除淡水克氏螯虾之外,其它受试的虾蟹均不能感染WSSV。克氏螯虾3个不同剂量级感染至12d平均死亡率为94%。从发病或死亡个体采集血淋巴,经电镜负染色可观察到完整的病毒粒子,其形态大小、靶细胞组织病理均与从中国对虾中分离的WSSV相似或相同。同时,通过原位杂交技术进一步证明该实验的可靠性。克氏螯虾重复感染效果良好,有可能成为研究WSSV的一种理想的病毒体内增殖模型。  相似文献   

17.
The prevalence and geographic distribution of white spot syndrome virus (WSSV) infection among cultured penaeid shrimp in the Philippines was determined from January to May, 1999, using PCR (polymerase chain reaction) protocol and Western blot assays. A total of 71 samples consisting of 18 post-larvae (PL) and 53 juvenile/adult shrimp samples (56 to 150 days-of-culture, DOC) were screened for WSSV. Of the 71 samples tested, 51 (72%) were found positive for WSSV by PCR: 61% (31/51) after 1-step PCR and 39% (20/51) after 2-step, non-nested PCR. Of the PL and juvenile/adult shrimp samples tested, 50 and 79% were positive for WSSV, respectively. By Western blot, only 6 of the 51 (12%) PCR-positive samples tested positive for WSSV. Of the 20 samples negative for WSSV by PCR, all tested negative for WSSV by Western blot assay. This is the first report of the occurrence of WSSV in the Philippines.  相似文献   

18.
Sequence comparisons of the genomes of white spot syndrome virus (WSSV) strains have identified regions containing variable-length insertions/deletions (i.e. indels). Indel-I and Indel-II, positioned between open reading frames (ORFs) 14/15 and 23/24, respectively, are the largest and the most variable. Here we examined the nature of these 2 indel regions in 313 WSSV-infected Penaeus monodon shrimp collected between 2006 and 2009 from 76 aquaculture ponds in the Mekong Delta region of Vietnam. In the Indel-I region, 2 WSSV genotypes with deletions of either 5950 or 6031 bp in length compared with that of a reference strain from Thailand (WSSV-TH-96-II) were detected. In the Indel-II region, 4 WSSV genotypes with deletions of 8539, 10970, 11049 or 11866 bp in length compared with that of a reference strain from Taiwan (WSSV-TW) were detected, and the 8539 and 10970 bp genotypes predominated. Indel-II variants with longer deletions were found to correlate statistically with WSSV-diseased shrimp originating from more intensive farming systems. Like Indel-I lengths, Indel-II lengths also varied based on the Mekong Delta province from which farmed shrimp were collected.  相似文献   

19.
Eleven isolates of Radopholus similis from various banana-growing areas around the world and one isolate of R. bridgei from turmeric in Indonesia were compared using DNA and isoenzyme analysis. The polymerase chain reaction (PCR) was used to amplify a fragment of ribosomal DNA (rDNA), comprising the two internal transcribed spacers (ITS) and the 5.8S gene. Restriction fragment length polymorphisms (RFLPs) in this rDNA fragment were used to compare the 10 isolates. The analysis of this rDNA region revealed little variation among the isolates tested. However, data also were obtained by random amplified polymorphic DNA (RAPD) analysis of total DNA, and a hierarchical cluster analysis of these data arranged the R. similis isolates into two clusters. The first cluster consisted of isolates from Nigeria, Cameroon, Queensland, and Costa Rica; the second was comprised of isolates from Guinea, Guadeloupe, the Ivory Coast, Uganda, and Sri Lanka. The isolate of R. bridgei from turmeric in Indonesia appeared to be more divergent. This grouping was consistent with that obtained when phosphate glucose isomerase (PGI) isoenzyme patterns were used to compare the R. similis isolates. The results from both RAPD analysis and PGI isoenzyme studies indicate that two gene pools might exist within the R. similis isolates studied. No correlation could be detected between the genomic diversity as determined by RAPD analysis and either geographic distribution of the isolates or differences in their pathogenicity. The results support the hypothesis that R. similis isolates have been spread with banana-planting material.  相似文献   

20.
In the present study, the existence of white spot syndrome virus (WSSV) in blue crab (Callinectes sapidus) collected from 3 different American coastal waters (New York, New Jersey, and Texas) was confirmed by 2-step diagnostic polymerase chain reaction and in situ hybridization analysis. When geographic isolates were also compared using a gene that encodes the WSSV ribonucleotide reductase large subunit RR1 (WSSV rr1), a C1661-to-T point mutation was found in the New Jersey WSSV isolated. This point mutation, which resulted in the creation of an additional RsaI endonuclease recognition site, was not found in the WSSV from the New York and Texas blue crab samples, or in the WSSV Taiwan isolate, or in any of the other WSSV geographical isolates for which data are available. WSSV rr1-specific RsaI amplified restriction fragment length polymorphism of an amplified 1156-bp fragment thus distinguished the New Jersey blue crab samples from the other WSSV isolates. Received June 29, 2000; accepted October 11, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号