首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, continuous, and highly sensitive fluorescence assay is described for the measurement of epoxide hydrase activity. The method is based on the large differences between the fluorescence spectra of certain K-region arene oxides and their corresponding trans-dihydrodiols. Enzymatic hydration of K-region arene oxides of phenanthrene, pyrene, benzo[a]pyrene, and 7,12-dimethylbenzo[a]anthracene was studied. The assay was most sensitive with benzo[a]pyrene-4,5-oxide as substrate. With 10 μm benzo[a]pyrene-4,5-oxide, enzymatic rates of 30 pmol of dihydrodiol/min/mg of protein are three to five times those of the blank without enzyme. The fluorometric method described has been used to study site-directed inhibitors of epoxide hydrase and the stereoselective hydration of racemic arene oxides.  相似文献   

2.
Rat liver nuclei have 2 to 12% of the corresponding microsomal aryl hydrocarbon hydroxylase, aminopyrine and benzphetamine N-demethylase, NADPH-cytochrome c reductase, and epoxide hydrase activities. Nuclear membranes were prepared from isolated liver nuclei by a sucrose density centrifugation technique. A 2.5- to 10.2-fold increase in the specific enzyme activities was observed in nuclear membrane as compared to intact nuclei. Several properties of the rat liver nuclear membrane and microsomal epoxide hydrase have been compared. Nuclear epoxide hydrase was similar to the corresponding microsomal enzyme in being induced by phenobarbital whereas 3-methylcholanthrene did not produce any effects. Nuclear membrane and microsomal epoxide hydrase were inhibited to a similar degree by 1,1,1-trichloropropene oxide, cyclohexene oxide, an trans-stilbene oxide. The apparent Km value of nuclear membrane epoxide hydrase was 20 μm for benzo(a)pyrene 4,5-oxide, which is 5.5-fold lower than the corresponding microsomal Km value (112 μm). Nuclear membranes were prepared from isolated nuclei of rat kidney, lung, spleen, and heart by the DNase digestion method. Epoxide hydrase activity in intact nuclei was in the following order: kidney > lung ? spleen, or heart. Increases of 2.2- and 2.5-fold in specific epoxide hydrase activity were observed in kidney and lung when nuclear membranes were compared to intact nuclei. DMSO, dimethylsulfoxide  相似文献   

3.
Methods are described for the incorporation into phospholipid vesicles of epoxide hydrase isolated from liver microsomes of phenobarbital-treated rabbits. Chromatography on a Sephadex G-50 column of epoxide hydrase and egg yolk phosphatidylcholine treated with sodium cholate yielded homogeneous vesicles with a diameter of about 25 nm and containing 80 to 85% of the protein applied. At high substrate concentrations, the vesicles catalyzed the hydration of benzo(a)pyrene-4,5-oxide and styrene-7,8-epoxide at a rate similar to that obtained with the enzyme in a soluble form. However, the kinetics of styrene glycol formation catalyzed by the vesicular or microsomal preparations were complex. Convex Lineweaver-Burk plots and concave Hill plots were obtained, whereas normal Michaelis-Menten kinetics characterized the hydration catalyzed by the enzyme in a soluble form. The results could be explained if reconstitution of the enzyme into the vesicles gives rise to low affinity high capacity sites for the substrate on the enzyme, or alternatively facilitates the interaction of the substrate with such sites already present. It is suggested that reconstituted liposomes containing both the liver microsomal hydroxylase system and epoxide hydrase may prove to be a good model system for evaluating substrate specificity and factors of importance in the formation of toxic and carcinogenic metabolites by these enzymes.  相似文献   

4.
Solubilized cytochrome P-450 monooxygenase and epoxide hydrase activities from rat liver microsomes have been separated by column chromatography. The highly active epoxide hydrase fraction is still contaminated with cytochrome P-450, which has very low monooxygenase activity. The highly purified cytochrome P-450 fraction possesses high monooxygenase activity and is essentially devoid of epoxide hydrase activity. Purification factors for the epoxide hydrase through four purification steps are similar with [3H]styrene oxide, [3H]naphthalene oxide, [3H]cyclohexene oxide, and benzene oxide as substrates. Failure of benzene oxide to inhibit hydration of styrene or naphthalene oxide in the most purified preparations in indicative of the presence of at least two hydrases. These purified cytochrome monooxygenase and hydrase preparations represent valuable tools for the study of the intermediacy of arene oxides in drug metabolism. Thus, with naphthalene, only naphthol is formed with the monooxygenase, while both naphthol and the dihydrodiol are formed in the presence of monooxygenase and hydrase. A convenient radiochemical synthesis of [3H]naphthalene 1,2-oxide and assays for the measurement of the hydration of [3H]naphthalene oxide and benzene oxide, based on differential extractions and high-pressure liquid chromatography, respectively, are described.  相似文献   

5.
A coupled assay was devised for the assay of liver microsomal epoxide hydratase using the ability of alcohol dehydrogenase to transfer electrons from diols to NAD+: epoxide hydratase activity was continuously monitored at 340 nm. Rates of hydrolysis of octene-1,2-oxide and styrene-7,8-oxide measured utilizing this assay were similar to those determined using gas-liquid chromatography and radiometric thin-layer chromatography, respectively. The assay was used to examine the ability of rat liver microsomes and highly purified rat liver microsomal epoxide hydratase fractions to hydrolyze 15 other epoxides.  相似文献   

6.
1. The substrate specificity of membrane-bound and purified epoxide hydrase from rat liver microsomes has been studied. Both enzyme preparations catalyzed the hydration of a variety of alkene oxidase as well as arene oxides of several polycyclic aromatic hydrocarbons. 2. Unlike the membrane-bound enzyme, the rate of hydration for most of the substrates catalyzed by the purified epoxide hydrase was constant for only 1 or 2 min. The addition of dilauroyl phosphatidylcholine or heated microsomes to the incubation mixture extended the linearity of the reaction. 3. When rat liver microsomes were used as the source of the enzyme, the apparent Km values for many of the substrates were dependent on the amount of microsomes used. When purified epoxide hydrase was used as the enzyme source and benzo(a)pyrene 11,12-oxide as substrate, the apparent Km for benzo(a)pyrene 11,12-oxide was independent of enzyme concentration but dependent on added lipid concentration. Thus, in the absence of added dilauroyl phosphatidylcholine or in the presence of this lipid at a concentration below its critical micelle concentration, the observed Km for benzo(a)pyrene 11,12-oxide remained constant. However, when the lipid concentration was greater than the critical micelle concentration, the apparent Km value increased linearly with lipid concentration. These results are consistent with a model based on the partition of lipid-soluble substrate between the lipid micelle and the aqueous medium.  相似文献   

7.
A cell-free extract prepared from Fusarium solani pisi grown on cutin, catalyzed the hydration of 18-hydroxy-9,10-epoxyoctadecanoic acid to 9,10,18-trihydroxyoctadecanoic acid while extracts from glucose-grown cells contained <6% of this activity. The product was identified by Chromatographic techniques and by radio gas-liquid chromatography of its periodate oxidation products. This epoxide hydrase activity had a pH optimum at 9.0 and it was located mainly in the 100,000g supernatant fraction. Rate of hydration of the epoxy acid was linear up to 15 min and up to a protein concentration of 30 μg/ml. This fungal epoxide hydrase has a molecular weight of 35,000, as determined by Sephadex G-100 gel filtration. It was partially purified by ammonium sulfate fractionation and gel filtration. The apparent Km and V of the enzyme was 2 × 10?4m and 222 nmoles/min/mg, respectively. Parachloromercuribenzoate strongly inhibited the enzyme, while N-ethylmaleimide was a less potent inhibitor. 1,1,1,-Trichloropropylene-2,3-oxide at 10?3m gave 50% inhibition of the hydration of 18-hydroxy-9,10-epoxyoctadecanoic acid. Kinetic analysis showed that trichloropropylene oxide was a competitive inhibitor. 18-Acetoxy-9,10-epox-yoctadecanoic acid, methyl 18-acetoxy-9,10-epoxyoctadecanoate, 9,10-epoxyoctadecanoic acid, and styrene oxide were not readily hydrated by this fungal epoxide hydrase showing that it has a stringent substrate specificity. Analysis of the enzymatic hydration product on boric acid-impregnated silica gel plates showed that the product obtained from the cis epoxide was exclusively erythro while acid hydrolysis of this epoxide gave rise to the expected threo product. This enzyme is novel in that it catalyzes cis hydration of epoxide while the other epoxide hydrases heretofore isolated catalyzed trans hydration of epoxides.  相似文献   

8.
Apparent Km- and Vmax-values of nuclear styrene 7,8-oxide hydrolase were determined at different protein concentrations. In the protein concentrations range used no significant differences in the apparent Km-values were observed. The influence of the incubation with different modifiers (i.e. SKF-525A, metyrapone, 1,2-epoxy-3,3,3 trichloropropane, cyclohexene oxide) at two different concentrations on this enzyme activity was also determined. Cyclohexene oxide and 1,2-epoxy-3,3,3-trichloropropane, two well known inhibitors of the microsomal epoxide hydrolase(s) caused a marked inhibition, metyrapone had a strong activating effect whereas SKF-525A had no effect. In vivo pretreatment with phenobarbital significantly induced the nuclear epoxide hydrolase whereas β-naphthoflavone caused a lower degree of induction. This pattern is quantitatively different but qualitatively very similar to the microsomal one. Moreover a toxifying to detoxifying enzymatic activity balance is attempted for the metabolization of the alkenic double bond of styrene, taking into account the ratio between the styrene monooxygenase (toxifying enzyme) and the styrene 7,8-oxide hydrolase (detoxifying enzyme) after the above mentioned pretreatments, both in the microsomal and nuclear fractions.  相似文献   

9.
The effects of a wide variety of chemical modification reagents on the activity of purified rat liver microsomal epoxide hydrase have been investigated. Alkylating agents, such as the phenacyl bromides and benzyl bromide are potent inhibitors of epoxide hydrase. 2-Bromo-4'-nitroacetophenone (p-nitrophenacyl bromide) specifically and irreversibly inactivates epoxide hydrase. Pseudo-first order kinetics of inhibition is observed at higher inhibitor/enzyme ratios. The rate of inactivation is controlled by a group on the enzyme with an apparent pKa of 7.6. Inactivation of the enzyme with 14C-labeled 2-bromo-4'-nitroacetophenone leads to the incorporation of approximately 1 mol of radioactive inhibitor/mol of protein. Epoxide hydrase can be protected against this inactivation by the substrate phenanthrene-9,10-oxide. These results are consistent with the interpretation that 2-bromo-4'-nitroacetophenone acts as an active site-directed inhibitor. The site of alkylation by 2-bromo-4'-nitroacetophenone is a histidine residue of epoxide hydrase. The N-alkylated histidine derivative has been identified as 1-(p-nitrophenacyl)-4-histidine. A possible mechanism for the enzymatic hydration catalyzed by epoxide hydrase is discussed which involves a histidine residue of the enzyme serving as a general base catalyst for the nucleophilic addition of water.  相似文献   

10.
Styrene monooxygenase activity was measured in intact nuclear preparations from rat liver by means of a gas chromatographic method. Styrene epoxide formation is NADPH-dependent although it is enhanced when NADH is added with NADPH. This activity is inhibited by microsomal monooxygenase inhibitors SKF 525A and metyrapone and by microsomal epoxide hydrase inhibitors 1,2-epoxy-3,3,3-trichloropropene oxide and cyclohexene oxide. The percentage of inhibition is quantitatively dffferent for the four compounds. Known inducers of liver microsomal monooxygenase show different patterns of induction on nuclear preparations. Phenobarbital induces nuclear monooxygenase activity more than the respective microsomal activity, whereas the contrary holds true for β-naphthoflavone.  相似文献   

11.
Epoxide hydrase activity, measured with [3H]styrene oxide as substrate, is present in mammalian liver, kidney, lung, intestine and skin. The hepatic level of the enzyme, measured in vitro with [3H]styrene oxide, benzene oxide or naphthalene-1,2-oxide, is elevated substantially by pretreatment of rats with phenobarbital and to a lesser extent by pretreatment with 3-methylcholanthrene. Metyrapone and 1-(2-isopropylphenyl)-imidazole, two monooxygenase inhibitors, activate epoxide hydrase in vitro, but have no demonstrable effect on the enzyme in vivo. 3,3,3-Trichloropropene oxide, a potent in vitro inhibitor of epoxide hydrase, has no effect on monooxygenase activity measured in vitro with [3H]benzenesulfonanilide. Trichloropropene oxide is extremely toxic. In sub-lethal dosages, it does not significantly inhibit epoxide hydrase activity in vivo, although it and several other epoxides do react with and thereby reduce hepatic levels of glutathione. Cyclohexane oxide, another potent in vitro inhibitor of epoxide hydrase, reduces hepatic glutathione levels to 10% of control values. This relatively non-toxic substance should potentiate the hepatotoxicity of chlorobenzene by inhibiting further metabolism of the toxic chlorobenzene oxide intermediate through either hydration or conjugation with glutathione. Instead, co-administration of cyclohexene oxide and chlorobenzene significantly reduces the rate of metabolism of [14C]chlorobenzene and prevents the hepatic centrilobular necrosis caused by chlorobenzene in rats. Arene oxide-mediated hepatotoxicity apparently is dependent upon a variety of factors including both rates of formation and degradation of arene oxides in tissue. The presently known hydrase inhibitors are not sufficiently selective in their effects on liver cells to permit a quantitative assessment of the relative importance of these factors.  相似文献   

12.
Immunochemical techniques were used to investigate the biochemical properties of human lung epoxide hydrolases. Two epoxide hydrolases with different immunoreactive properties were identified. These two epoxide hydrolases were found in both cytosolic and microsomal cell fractions. Immunotitration of enzyme activity showed that enzymes that catalyze the hydration of benzo(a)pyrene 4,5-oxide react with antiserum to rat microsomal epoxide hydrolase; those that hydrate trans-stilbene oxide do not. Immunotitration and Western blot experiments showed that microsomal and cytosolic benzo(a)pyrene 4,5-oxide hydrolases have significant structural homology. Immunohistochemical staining of human lung benzo(a)pyrene 4,5-oxide hydrolase showed that the enzyme is localized primarily in the bronchial epithelium. No cell type-specific localization was observed. An enzyme-linked immunosorbent assay was developed which allows direct quantitation of benzo(a)pyrene 4,5-oxide hydrolase protein. Levels of enzyme protein detected by this assay correlated well with enzyme levels determined by substrate conversion assays.  相似文献   

13.
P Wang  J Meijer  F P Guengerich 《Biochemistry》1982,21(23):5769-5776
Epoxide hydrolase (EC 3.3.2.3) was purified to electrophoretic homogeneity from human liver cytosol by using hydrolytic activity toward trans-8-ethylstyrene 7,8-oxide (TESO) as an assay. The overall purification was 400-fold. The purified enzyme has an apparent monomeric molecular weight of 58 000, significantly greater than the 50 000 found for human (or rat) liver microsomal epoxide hydrolase or for another TESO-hydrolyzing enzyme also isolated from human liver cytosol. Purified cytosolic TESO hydrolase catalyzes the hydrolysis of cis-8-ethylstyrene 7,8-oxide 10 times more rapidly than does the microsomal enzyme, catalyzes the hydrolysis of TESO and trans-stilbene oxide as rapidly as the microsomal enzyme, but catalyzes the hydrolysis of styrene 7,8-oxide, p-nitrostyrene 7,8-oxide, and naphthalene 1,2-oxide much less effectively than does the microsomal enzyme. Purified cytosolic TESO hydrolase does not hydrolyze benzo[a]pyrene 4,5-oxide, a substrate for the microsomal enzyme. The activities of the purified enzymes can explain the specific activities observed with subcellular fractions. Anti-human liver microsomal epoxide hydrolase did not recognize cytosolic TESO hydrolase in purified form or in cytosol, as judged by double-diffusion immunoprecipitin analysis, precipitation of enzymatic activity, and immunoelectrophoretic techniques. Cytosolic TESO hydrolase and microsomal epoxide hydrolase were also distinguished by peptide mapping. The results provide evidence that physically different forms of epoxide hydrolase exist in different subcellular fractions and can have markedly different substrate specificities.  相似文献   

14.
Nuclear and microsomal sources of hepatic cytochrome P-448 and epoxide hydrase were compared using antibodies made against the pure antigens isolated from rat liver microsomes. Both antigens were easily detected in detergent-solubilized nuclei and microsomes from rats using the Ouchterlony double-diffusion technique. Epoxide hydrase from either whole nuclei or nuclear envelope was immunochemically identical with the enzyme isolated from microsomes. Similarly, in rats pretreated with 3-methylcholanthrene, the cytochrome P-448 of nuclear origin was immunochemically indistinguishable from the enzyme derived from microsomes. These results establish the immunochemical identity of these hepatic nuclear and microsomal enzymes and provide a firm basis for applying the knowledge gained with the microsomal system of metabolism to the nuclear system.  相似文献   

15.
Epoxide hydrase and glutathione (GSH) S-transferase activities were measured in subcellular fractions prepared from liver or hepatopancreas and some extrahepatic organs of a number of marine species common to Maine or Florida. These activities were easily detected in the species studied. In fish, hepatic GSH S-transferase activities were normally higher than hepatic epoxide hydrase activities for the alkene oxide (styrene oxide and octene oxide) and arene oxide (benzo[a]pyrene 4,5-oxide) substrates studied, whereas in crustacea, hepatopancreas epoxide hydrase activities were higher than hepatopancreas GSH S-transferase activities with the same substrates. Extrahepatic organs from fish and crustacea usually had higher GSH S-transferase activities than epoxide hydrase activities with the alkene and arene oxide substrates. GSH S-transferase activity was also found in liver or hepatopancreas of every aquatic species studied and in a number of extrahepatic organs, when 1,2-dichloro-4-nitrobenzene or 1-chloro-2,4-dinitrobenzene served as substrate.  相似文献   

16.
The metabolism of benzo(a)pyrene (BP) by rat liver microsomes has been examined in the presence of competitive (styrene oxide), uncompetitive (3,3,3-trichloropropene oxide, TCPO), and noncompetitive (cyclohexene oxide) inhibitors of arene oxide (AO) hydrase. Formation of BP-dihydrodiols was inhibited selectively, with 9,10-dihydrodiol at the lowest inhibitor concentration, and then 7,8- and 4,5-dihydrodiols were decreased at higher inhibitor concentrations. Increased levels of 9-phenol, 7-phenol, and 4,5-oxide appeared selectively in the same order. Appearance of these alternate products did not quantitatively compensate for the loss of dihydrodiols so that there was a net loss of oxidation products. A 1000-fold increase in the concentration of TCPO did not further inhibit BP oxidation. Formation of quinones and 3-phenol was completely unaffected by the inhibitors. The limiting decrease in BP oxidation products was the same for each inhibitor and was greater for 3-methylcholanthrene-induced microsomes (25–30%) than for phenobarbital-induced microsomes (15–20%), which produced a smaller proportion of dihydrodiols. Several mechanisms for this specific loss of oxide-derived reaction products have been considered. BP-oxidation products, particularly 9-phenol, significantly inhibit BP oxidation; however, this inhibition is nonspecific in that 3-phenol, quinones, and oxide-derived products are all decreased. 9-Phenol was far more effective as an inhibitor than as a substrate. Glutathione conjugation of oxides due to cytosolic contamination was excluded by virtue of the near absence of water-soluble products. Reduction of 4,5-oxide occurred, in the absence of oxygen, at a rate which was about half the rate of BP monooxygenation, but this rate decreased 75-fold in the presence of air. Enhanced reduction of BP-oxides in the presence of hydrase inhibitors can explain the action of these inhibitors on BP oxidation if the reduction of microsomally generated 4,5-oxide is several times faster than reduction of added 4,5-oxide. The selective effect of hydrase inhibitors on different dihydrodiols can be attributed to differences in the relative stabilities of the intermediate oxides. The formation of 4,5-dihydrodiol from BP is relatively insensitive to hydrase inhibitors in comparison to the hydration of added 4,5-oxide; this results from the rate-determining monooxygenation step.  相似文献   

17.
The metabolism of [14C]benzo[a]pyrene by microsomes from the lungs of normal and 3-methylcholanthrene-treated DBA/2J, C57BL/6J, and A/HeJ mouse strains was quantitatively analyzed by high-pressure liquid chromatography. The ratio of dihydrodiols of benzo[a]pyrene to total metabolites formed was greater with lung microsomes than with liver microsomes in all three strains. The ratio of epoxide hydrase to monooxygenase activity in mouse lung was shown to be considerably higher than in mouse liver. Benzo[a]pyrene metabolism by control lung microsomes showed some strain differences. C57BL/6J and A/HeJ mice formed twice as much dihydrodiols as a percentage of total metabolism compared to DBA/2J mice. DBA/2J mice produced somewhat less phenol 2 fraction and considerably more quinone 1 and 2 fractions than the other two mouse strains as a percentage of total metabolism. Treatment of C57BL/6J and DBA/2J mice with 3-methylcholanthrene resulted in a 20-fold increase in the metabolism of benzo[a]pyrene, while A/HeJ mice were induced more than 50-fold. The profiles of metabolites from the 3-methylcholanthrene-induced animals were nearly identical in all three mouse strains.  相似文献   

18.
Epoxide hydrolase (EC 3.3.2.3) purified from rat liver microsomes has been immobilized by covalent linking to dextran activated by imidazolyl carbamate groups, under mild conditions. Kappm values of free and dextran bound epoxide hydrolase toward benzo(a)pyrene-4,5-oxide were 0.5 and 0.35 μM respectively, while Vappmax was lowered from 300 to 120 nmol min?1mg?1protein. The activity lost upon coupling could not be restored by digestion of the support by dextranase (1,6-α-d-glucan 6-glucanohydrolase, EC 3.2.1.11) treatment. This fact, along with the similarity of the activation energy values for both native and bound epoxide hydrolase, indicated that steric hindrance effects due to the polymer support played only a minor role in this loss of activity. Evidences of changes in the conformation of epoxide hydrolase were obtained by a comparative study of u.v. circular dichroism and tryptophan fluorescence emission spectra of the native and dextran bound enzymes. On the other hand, the enzyme conjugate showed greater resistance than the free enzyme to thermal inactivation.  相似文献   

19.
A variety of chlorinated and fluorinated epoxides and related compounds were synthesized and evaluated as inhibitors of epoxide hydrase. The compounds were tested using chicken liver microsomes and a radiometric assay based on [3H]styrene oxide, and using partially purified chicken liver microsomal epoxide hydrase and a continuous photometric assay based on p-nitrostyrene oxide, whose hydration could be monitored at 310 nm. For the 16 compounds studied both assays gave similar patterns of inhibitory activity. As expected from the relative Km values of the two substrates, all inhibitors were considerably more active against styrene oxide (Km =1.0 mM) than against p-nitrostyrene oxide (Km = 4.2 μM), and styrene oxide was a weak alternate-substrate inhibitor against p-nitrostyrene oxide. 1,1,1-Trichloropropene oxide, however, was a potent alternate-substrate inhibitor against p-nitrostyrene oxide. Addition of various substituents to the α-carbon of styrene oxide generated a series of compounds whose inhibitory potency toward p-nitrostyrene oxide increased in the order H ≈ CF3 < CH3 < CH2Cl < CHCl2 < CCl3 ≈ 1,1,1-trichloropropene oxide. In contrast, addition of a CH3 or CCl3 group to the β-carbon of styrene oxide resulted in only a modest increase in inhibitory potency. 2-Phenyl- and 3-phenyloxetane showed no pronounced inhibitory activity toward either styrene oxide or p-nitrostyrene oxide, but pentafluorophenyl ethylene oxide and 1,1, 1-trichlorobutane-3,4-oxide were moderately active inhibitors, although significantly less potent than 1,1,1-trichloroproene oxide. These results show that electronegativity, steric effects, and hydrophobic effects are each important in governing the interaction of epoxide hydrase substrates with the enzyme, although it is not yet possible to analyze separately the effects of each of these parameters on Km, V, and the catalytic mechanism.  相似文献   

20.
A soluble epoxide hydrase which catalyzes the hydration of 9,10-epoxypalmitic acid has been partially purified from cell-free preparations from Bacillusmegaterium ATCC 14581. The hydrase can be cleanly separated from a soluble cytochrome P-450-dependent monooxygenase complex, previously demonstrated in this bacterium, that can catalyze the epoxidation of palmitoleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号