共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have investigated the human population history of eastern North America by examining mitochondrial DNA (mtDNA) variation among Native Americans, but these studies could only reconstruct maternal population history. To evaluate similarities and differences in the maternal and paternal population histories of this region, we obtained DNA samples from 605 individuals, representing 16 indigenous populations. After amplifying the amelogenin locus to identify males, we genotyped 8 binary polymorphisms and 10 microsatellites in the male-specific region of the Y chromosome. This analysis identified 6 haplogroups and 175 haplotypes. We found that sociocultural factors have played a more important role than language or geography in shaping the patterns of Y chromosome variation in eastern North America. Comparisons with previous mtDNA studies of the same samples demonstrate that male and female demographic histories differ substantially in this region. Postmarital residence patterns have strongly influenced genetic structure, with patrilocal and matrilocal populations showing different patterns of male and female gene flow. European contact also had a significant but sex-specific impact due to a high level of male-mediated European admixture. Finally, this study addresses long-standing questions about the history of Iroquoian populations by suggesting that the ancestral Iroquoian population lived in southeastern North America. 相似文献
2.
Nine newly described single-copy and lowcopy-number genomic DNA sequences isolated from a flow-sorted human Y chromosome library were mapped to regions of the human Y chromosome and were hybridized to Southern blots of male and female great ape genomic DNAs (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). Eight of the nine sequences mapped to the euchromatic Y long arm (Yq) in humans, and the ninth mapped to the short arm or pericentromeric region. All nine of the newly identified sequences and two additional human Yq sequences hybridized to restriction fragments in male but not female genomic DNA from the great apes, indicating Y chromosome localization. Seven of these 11 human Yq sequences hybridized to similarly-sized restriction endonuclease fragments in all the great ape species analyzed. The five human sequences that mapped to the most distal subregion of Yq (deletion of which region is associated with spermatogenic failure in humans) were hybridized to Southern blots generated by pulsed-field gel electrophoresis. These sequences define a region of approximately 1 Mb on human Yq in which HpaII tiny fragment (HTF) islands appear to be absent. The conservation of these human Yq sequences on great ape Y chromosomes indicates a greater stability in this region of the Y than has been previously described for most anonymous human Y chromosomal sequences. The stability of these sequences on great ape Y chromosomes seems remarkable given that this region of the Y does not undergo meiotic recombination and the sequences do not appear to encode genes for which positive selection might occur.
Correspondence to: B. Steele Allen 相似文献
3.
Origins and genetic diversity of New World Creole cattle: inferences from mitochondrial and Y chromosome polymorphisms 总被引:2,自引:0,他引:2
C. Ginja M. C. T. Penedo L. Melucci J. Quiroz O. R. Martínez López M. A. Revidatti A. Martínez‐Martínez J. V. Delgado L. T. Gama 《Animal genetics》2010,41(2):128-141
The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 ± 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African‐derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y‐haplotype diversity in Creoles was high (H = 0.779 ± 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y‐haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male‐mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189‐90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages. 相似文献
4.
The peopling of Comoro Archipelago is defined by successive waves of migration from three main areas: the East African Coast (Bantu-speaking populations), the Persia and Arabian Peninsula, and Southeast Asia (especially Indonesia). It follows an apparent classic trihybrid admixture model. To better understand the Comorian population admixture dynamics, we analyzed the contributions of these three historical parental components to its genetic pool. To enhance accuracy and reliability, we used both classical and molecular markers. Samples consist of published data: blood group frequencies, 14 KIR genes, 19 mitochondrial DNA SNPs (to highlight female migrations), 14 Y chromosome SNPs (male migrations). We revealed distinct admixture patterns for autosomal and uniparental markers. KIR gene frequencies had never been used to estimate admixture rates, this being a first assessment of their informative power in admixture studies. To avoid major methodological and statistical bias, we determined admixture coefficients through nine well-tried estimators and their associated software programs (ADMIX95, ADMIX, admix 2.0, LEA, LEADMIX, and Mistura). Results from mtDNA and Y chromosome markers point to an important sex-bias in the admixture event. The original Bantu gene pool received a predominant male-mediated contribution from the Arabian Peninsula and Persia, and a female-mediated contribution from Southeast Asia. Admixture rates estimated from autosomal KIR gene markers point also to an unexpected elevated Austronesian contribution. 相似文献
5.
Lewis CM Tito RY Lizárraga B Stone AC 《American journal of physical anthropology》2005,127(3):351-360
Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations. 相似文献
6.
7.
8.
Kuch M Gröcke DR Knyf MC Gilbert MT Younghusband B Young T Marshall I Willerslev E Stoneking M Poinar H 《American journal of physical anthropology》2007,132(4):594-604
We have used a systematic protocol for extracting, quantitating, sexing and validating ancient human mitochondrial and nuclear DNA of one male and one female Beothuk, a Native American population from Newfoundland, which became extinct approximately 180 years ago. They carried mtDNA haplotypes, which fall within haplogroups X and C, consistent with Northeastern Native populations today. In addition we have sexed the male using a novel-sexing assay and confirmed the authenticity of his Y chromosome with the presence of the Native American specific Y-QM3 single nucleotide polymorphism (SNP). This is the first ancient nuclear SNP typed from a Native population in the Americas. In addition, using the same teeth we conducted a stable isotopes analysis of collagen and dentine to show that both individuals relied on marine sources (fresh and salt water fish, seals) with no hierarchy seen between them, and that their water sources were pooled or stored water. Both mtDNA sequence data and Y SNP data hint at possible gene flow or a common ancestral population for both the Beothuk and the current day Mikmaq, but more importantly the data do not lend credence to the proposed idea that the Beothuk (specifically, Nonosabasut) were of admixed (European-Native American) descent. We also analyzed patterns of DNA damage in the clones of authentic mtDNA sequences; there is no tendency for DNA damage to occur preferentially at previously defined mutational hotspots, suggesting that such mutational hotspots are not hypervariable because they are more prone to damage. 相似文献
9.
High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas 总被引:6,自引:0,他引:6
A total of 63 binary polymorphisms and 10 short tandem repeats (STRs) were genotyped on a sample of 2,344 Y chromosomes from 18 Native American, 28 Asian, and 5 European populations to investigate the origin(s) of Native American paternal lineages. All three of Greenberg's major linguistic divisions (including 342 Amerind speakers, 186 Na-Dene speakers, and 60 Aleut-Eskimo speakers) were represented in our sample of 588 Native Americans. Single-nucleotide polymorphism (SNP) analysis indicated that three major haplogroups, denoted as C, Q, and R, accounted for nearly 96% of Native American Y chromosomes. Haplogroups C and Q were deemed to represent early Native American founding Y chromosome lineages; however, most haplogroup R lineages present in Native Americans most likely came from recent admixture with Europeans. Although different phylogeographic and STR diversity patterns for the two major founding haplogroups previously led to the inference that they were carried from Asia to the Americas separately, the hypothesis of a single migration of a polymorphic founding population better fits our expanded database. Phylogenetic analyses of STR variation within haplogroups C and Q traced both lineages to a probable ancestral homeland in the vicinity of the Altai Mountains in Southwest Siberia. Divergence dates between the Altai plus North Asians versus the Native American population system ranged from 10,100 to 17,200 years for all lineages, precluding a very early entry into the Americas. 相似文献
10.
Colonization history in Fennoscandian rodents 总被引:5,自引:0,他引:5
MAARIT JAAROLA HAKAN TEGELSTRÖM KARL FREDGA 《Biological journal of the Linnean Society. Linnean Society of London》1999,68(1-2):113-127
Fennoscandia probably constitutes one of the best places on earth to study faunal history. During the height of the most recent glacial period Fennoscandia was completely covered with ice. Thus, the majority of extant species must originate from ancestors who survived the latest glaciation in non-glaciated areas outside Fennoscandia. Moreover, the geography and geological history of Fennoscandia suggests that post-glacial recolonization by land mammals must have been restricted to specific routes in time and space. Phylogeographic surveys of mitochondrial DNA (mtDNA) variation in Fennoscandian rodents have demonstrated that glacial history and patterns of post-glacial colonization have played a major role in shaping present day patterns of genetic differentiation within species. Thus, the genetic imprints of historical demographic conditions and vicariant geographic events have been retained within species and can be used to infer the history of populations. The field vole (Microtus agrestis) is used to illustrate these data and processes. Comparisons are made with phylogeographic surveys of the bank vole (Clethrionomys glareolus) , the eastern house mouse (Mus musculus) and the wood lemming (Myopus schisticolor) as well as a few other species for which less extensive studies have been performed. The main patterns of post-glacial colonization of Fennoscandia by rodents are described. The effects of timing and patterns of colonization on contemporary population genetic structure and levels of genetic variation are discussed. Specifically, the effects of hybridization and introgression as well as founder events and bottlenecks are explored. 相似文献
11.
Jack pine (Pinus banksiana Lamb.) is a broadly distributed North American conifer and its current range was covered by the Laurentian ice sheet during the last glacial maximum. To infer about the history and postglacial colonization of this boreal species, range-wide genetic variation was assessed using a new and highly variable minisatellite-like marker of the mitochondrial genome. Among the 543 trees analysed, 14 distinct haplotypes were detected, which corresponded to different repeat numbers of the 32-nucleotide minisatellite-like motif. Several haplotypes were rare with limited distribution, suggesting recent mutation events during the Holocene. At the population level, an average of 2.6 haplotypes and a mean haplotype diversity (H) of 0.328 were estimated. Population subdivision of genetic diversity was quite high with G(ST) and R(ST) values of 0.569 and 0.472, respectively. Spatial analyses identified three relatively homogeneous groups of populations presumably representative of genetically distinct glacial populations, one west and one east of the Appalachian Mountains in the United States and a third one presumably on the unglaciated northeastern coastal area in Canada. These results indicate the significant role of the northern part of the US Appalachian Mountains as a factor of vicariance during the ice age. A fourth distinct group of populations was observed in central Québec where the continental glacier retreated last. It included populations harbouring haplotypes present into the three previous groups, and it had higher level of haplotype diversity per population (H = 0.548) and lower population differentiation (G(ST) = 0.265), which indicates a zone of suture or secondary contact between the migration fronts of the three glacial populations. Introgression from Pinus contorta Dougl. var. latifolia Engelm. was apparent in one western population from Alberta. Altogether, these results indicate that the mitochondrial DNA variation of jack pine is geographically highly structured and it correlates well with large-scale patterns emerging from recent phylogeographical studies of other tree boreal species in North America. 相似文献
12.
Heterozygosity at eight nuclear enzymatic loci and mitochondrial DNA control region (D-loop) sequence polymorphism was compared between North and South American nine-banded armadillos (Dasypus novemcinctus: Xenarthra, Dasypodidae). All markers revealed a striking genetic homogeneity amongst Texas, Louisiana, and Mississippi individuals, vs. the usual level of polymorphism for the French Guiana population. This may reflect a founder effect during colonization of North America. Occurrence of polymorphism in the D-loop microsatellite motif of North American armadillos suggests a recent recovery of mitochondrial variability. Phylogeographic analyses using Dasypus kappleri as outgroup provides evidence for a clear separation between North and South American control region haplotypes. 相似文献
13.
《Fly》2013,7(2):101-107
In eukaryotes, abnormally circularized chromosomes, known as ‘rings,’ can be mitotically unstable. Some rings derived from a compound X-Y chromosome induce mitotic abnormalities during the embryonic cleavage divisions and early death in Drosophila melanogaster, but the underlying basis is poorly understood. We recently demonstrated that a large region of 359-bp satellite DNA, which normally resides on the X chromosome, prevents sister ring chromatids from segregating properly during these divisions. Cytogenetic comparisons among 3 different X-Y rings with varying levels of lethality showed that all 3 contain similar amounts of 359-bp DNA, but the repetitive sequences surrounding the 359-bp DNA differ in each case. This finding suggests that ring misbehavior results from novel heterochromatin position effects on the 359-bp satellite. The purpose of this view is to explore possible explanations for these effects with regard to heterochromatin formation and replication of repetitive sequences. Also discussed are similarities of this system to a satellite-based hybrid incompatibility and potential influences on genome evolution. 相似文献
14.
Patrick M Ferree 《Fly》2014,8(2):101-107
In eukaryotes, abnormally circularized chromosomes, known as ‘rings,’ can be mitotically unstable. Some rings derived from a compound X-Y chromosome induce mitotic abnormalities during the embryonic cleavage divisions and early death in Drosophila melanogaster, but the underlying basis is poorly understood. We recently demonstrated that a large region of 359-bp satellite DNA, which normally resides on the X chromosome, prevents sister ring chromatids from segregating properly during these divisions. Cytogenetic comparisons among 3 different X-Y rings with varying levels of lethality showed that all 3 contain similar amounts of 359-bp DNA, but the repetitive sequences surrounding the 359-bp DNA differ in each case. This finding suggests that ring misbehavior results from novel heterochromatin position effects on the 359-bp satellite. The purpose of this view is to explore possible explanations for these effects with regard to heterochromatin formation and replication of repetitive sequences. Also discussed are similarities of this system to a satellite-based hybrid incompatibility and potential influences on genome evolution. 相似文献
15.
16.
High-latitude ecotonal populations at the species margins may exhibit altered patterns of genetic diversity, resulting from more or less recent founder events and from bottleneck effects in response to climate oscillations. Patterns of genetic diversity were investigated in nine populations of the conifer black spruce (Picea mariana [Mill.] BSP.) in northwestern Québec, Canada, using seed-dispersed mitochondrial (mt) DNA and nuclear (nc) DNA. mtDNA diversity (mitotypes) was assessed at three loci, and ncDNA diversity was estimated for nine expressed sequence tag polymorphism (ESTP) loci. Sampling included populations from the boreal forest and the southern and northern subzones of the subarctic forest-tundra, a fire-born ecotone. For ncDNA, populations from all three vegetation zones were highly diverse with little population differentiation (thetaN = 0.014); even the northernmost populations showed no loss of rare alleles. Patterns of mitotype diversity were strikingly different: within-population diversity and population differentiation were high for boreal forest populations [expected heterozygosity per locus (HE) = 0.58 and thetaM = 0.529], but all subarctic populations were fixed for a single mitotype (HE = 0). This lack of variation suggests a founder event caused by long-distance seed establishment during postglacial colonization, consistent with palaeoecological data. The estimated movement of seeds alone (effective number of migrants per generation, NmM < 2) was much restricted compared to that estimated from nuclear variants, which including pollen movement (NmN > 17). This could account for the conservation of a founder imprint in the mtDNA of subarctic black spruce. After reduction, presumably in the early Holocene, the diversity in ncDNA would have been replenished rapidly by pollen-mediated gene flow, and maintained subsequently through vegetative layering during the current cooler period covering the last 3000 years. 相似文献
17.
Wolf population genetics in Europe: a systematic review,meta‐analysis and suggestions for conservation and management 下载免费PDF全文
Maris Hindrikson Jaanus Remm Malgorzata Pilot Raquel Godinho Astrid Vik Stronen Laima Baltrūnaité Sylwia D. Czarnomska Jennifer A. Leonard Ettore Randi Carsten Nowak Mikael Åkesson José Vicente López‐Bao Francisco Álvares Luis Llaneza Jorge Echegaray Carles Vilà Janis Ozolins Dainis Rungis Jouni Aspi Ladislav Paule Tomaž Skrbinšek Urmas Saarma 《Biological reviews of the Cambridge Philosophical Society》2017,92(3):1601-1629
The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human–carnivore conflict, which has led to long‐term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the ‘pre‐genomic era’ and the first insights of the ‘genomics era’. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large‐scale trends and patterns of genetic variation in European wolf populations, we conducted a meta‐analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south‐west (lowest genetic diversity) to north‐east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650?850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science‐based wolf conservation and management at regional and Europe‐wide scales. 相似文献
18.
M.‐A. Auger‐Rozenberg T. Boivin E. Magnoux C. Courtin A. Roques C. Kerdelhué 《Molecular ecology》2012,21(24):6086-6103
Most invasive species established in Europe originate from either Asia or North America, but little is currently known about the potential of the Anatolian Peninsula (Asia Minor) and/or the Near East to constitute invasion sources. Mediterranean forests are generally fragile ecosystems that can be threatened by invasive organisms coming from different regions of the Mediterranean Basin, but for which historical data are difficult to gather and the phylogeographic patterns are still poorly understood for most terrestrial organisms. In this study, we characterized the genetic structure of Megastigmus schimitscheki, an invasive seed‐feeding insect species originating from the Near East, and elucidated its invasion route in South‐eastern France in the mid 1990s. To disentangle the evolutionary history of this introduction, we gathered samples from the main native regions (Taurus Mountains in Turkey, Lebanon and Cyprus) and from the invaded region that we genotyped using five microsatellite markers and for which we sequenced the mitochondrial Cytochrome Oxidase I gene. We applied a set of population genetic statistics and methods, including approximate Bayesian computation. We proposed a detailed phylogeographic pattern for the Near East populations, and we unambiguously showed that the French invasive populations originated from Cyprus, although the available historical data strongly suggested that Turkey could be the most plausible source area. Interestingly, we could show that the introduced populations were founded from an extremely restricted number of individuals that realized a host switch from Cedrus brevifolia to C. atlantica. Evolutionary hypotheses are discussed to account for this unlikely scenario. 相似文献
19.
Challenging the inbreeding hypothesis in a eusocial mammal: population genetics of the naked mole‐rat,Heterocephalus glaber 下载免费PDF全文
Colleen M. Ingram Nicholas J. Troendle Clare A. Gill Stanton Braude Rodney L. Honeycutt 《Molecular ecology》2015,24(19):4848-4865
The role of genetic relatedness in the evolution of eusociality has been the topic of much debate, especially when contrasting eusocial insects with vertebrates displaying reproductive altruism. The naked mole‐rat, Heterocephalus glaber, was the first described eusocial mammal. Although this discovery was based on an ecological constraints model of eusocial evolution, early genetic studies reported high levels of relatedness in naked mole‐rats, providing a compelling argument that low dispersal rates and consanguineous mating (inbreeding as a mating system) are the driving forces for the evolution of this eusocial species. One caveat to accepting this long‐held view is that the original genetic studies were based on limited sampling from the species’ geographic distribution. A growing body of evidence supports a contrary view, with the original samples not representative of the species—rather reflecting a single founder event, establishing a small population south of the Athi River. Our study is the first to address these competing hypotheses by examining patterns of molecular variation in colonies sampled from north and south of the Athi and Tana rivers, which based on our results, serve to isolate genetically distinct populations of naked mole‐rats. Although colonies south of the Athi River share a single mtDNA haplotype and are fixed at most microsatellite loci, populations north of the Athi River are considerably more variable. Our findings support the position that the low variation observed in naked mole‐rat populations south of the Athi River reflects a founder event, rather than a consequence of this species’ unusual mating system. 相似文献
20.
Montano V Ferri G Marcari V Batini C Anyaele O Destro-Bisol G Comas D 《Molecular ecology》2011,20(13):2693-2708
The current distribution of Bantu languages is commonly considered to be a consequence of a relatively recent population expansion (3-5kya) in Central Western Africa. While there is a substantial consensus regarding the centre of origin of Bantu languages (the Benue River Valley, between South East Nigeria and Western Cameroon), the identification of the area from where the population expansion actually started, the relation between the processes leading to the spread of languages and peoples and the relevance of local migratory events remain controversial. In order to shed new light on these aspects, we studied Y chromosome variation in a broad dataset of populations encompassing Nigeria, Cameroon, Gabon and Congo. Our results evidence an evolutionary scenario which is more complex than had been previously thought, pointing to a marked differentiation of Cameroonian populations from the rest of the dataset. In fact, in contrast with the current view of Bantu speakers as a homogeneous group of populations, we observed an unexpectedly high level of interpopulation genetic heterogeneity and highlighted previously undetected diversity for lineages associated with the diffusion of Bantu languages (E1b1a (M2) sub-branches). We also detected substantial differences in local demographic histories, which concord with the hypotheses regarding an early diffusion of Bantu languages into the forest area and a subsequent demographic expansion and migration towards eastern and western Africa. 相似文献