首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunoglobulin binding domain B1 of streptococcal protein G (GB1), a small (56 residues), stable, single domain protein, is one of the most extensively used model systems in the area of protein folding and design. The recently determined NMR structure of a quadruple mutant (HS#124F26A, L5V/F30V/Y33F/A34F) revealed a domain-swapped dimer that dissociated into a partially folded, monomeric species at low micromolar protein concentrations. Here, we have characterized this monomeric, partially folded species by NMR and show that extensive conformational heterogeneity for a substantial portion of the polypeptide chain exists. Exchange between the conformers within the monomer ensemble on the microsecond to millisecond timescale renders the majority of backbone amide resonances broadened beyond detection. Despite these extensive temporal and spatial fluctuations, the overall architecture of the monomeric mutant protein resembles that of wild-type GB1 and not the monomer unit of the domain-swapped dimer.  相似文献   

2.
Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS). Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals.  相似文献   

3.
M Herold  B Leistler  A Hage  K Luger  K Kirschner 《Biochemistry》1991,30(15):3612-3620
The coenzyme (PLP) binding domain (residues 47-329) of the dimeric aspartate aminotransferase from Escherichia coli was produced separately by recombinant DNA methods. It folded autonomously both in vivo and in vitro, that is, independently of the native N- and C-terminal extensions that combine to form the small domain of eAAT. The PLP-domain had one binding site for PLP of relatively high affinity involving a covalent bond to the protein. It was monomeric, although the major subunit-subunit interface at the 2-fold symmetry axis remained unchanged. This effect appears to be due mainly to the absence of the N-terminal extension that contains hydrophobic residues, which interact with the PLP-domain of the second subunit in the wild-type dimer. Judged by circular dichroism, fluorescence, and HPLC gel filtration at increasing concentrations of guanidinium chloride, the PLP-domain underwent a three-state unfolding transition (M' in equilibrium M'* in equilibrium U') involving a compact intermediate M'*. This behavior parallels the unfolding of the dissociated native monomer of cAAT.  相似文献   

4.
A mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase (PfTIM) was created by mutating a tyrosine residue at position 74, at the subunit interface, to glycine. Tyr74 is a critical residue, forming a part of an aromatic cluster at the interface. The resultant mutant, Y74G, was found to have considerably reduced stability compared with the wild-type protein (TIMWT). The mutant was found to be much less stable to denaturing agents such as urea and guanidinium chloride. Fluorescence and circular dichroism studies revealed that the Y74G mutant and TIMWT have similar spectroscopic properties, suggestive of similar folded structures. Further, the Y74G mutant also exhibited a concentration-dependent loss of enzymatic activity over the range 0.1-10 microM. In contrast, the wild-type enzyme did not show a concentration dependence of activity in this range. Fluorescence quenching of intrinsic tryptophan emission was much more efficient in case of Y74G than TIMWT, suggestive of greater exposure of Trp11, which lies adjacent to the dimer interface. Analytical gel filtration studies revealed that in Y74G, monomeric and dimeric species are in dynamic equilibrium, with the former predominating at low protein concentration. Spectroscopic studies established that the monomeric form of the mutant is largely folded. Low concentrations of urea also drive the equilibrium towards the monomeric form. These studies suggest that the replacement of tyrosine with a small residue at the interface of triosephosphate isomerase weakens the subunit-subunit interactions, giving rise to structured, but enzymatically inactive, monomers at low protein concentration.  相似文献   

5.
The folding pathway for a 150-amino acid recombinant form of the dimeric cytokine human macrophage colony-stimulating factor (M-CSF) has been studied. All 14 cysteine residues in the biologically active homodimer are involved in disulfide linkages. The structural characteristics of folding intermediates blocked with iodoacetamide reveal a rapid formation of a small amount of a non-native dimeric intermediate species followed by a slow progression via both monomeric and dimeric intermediates to the native dimer. The transition from monomer to fully folded dimer is complete within 25 h at room temperature at pH 9.0. The blocked intermediates are stable under conditions of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and thus represent various dimeric and folded monomeric species of the protein with different numbers of disulfide bridges. Peptide mapping and electrospray ionization mass spectrometry revealed that a folded monomeric species of M-CSF contained three of the four native disulfide bridges, and this folded monomer also showed some biological activity in a cell-based assay. The results presented here strongly suggest that M-CSF can fold via two different pathways, one involving monomeric intermediates and another involving only dimeric intermediates.  相似文献   

6.
Ferrochelatase, the last enzyme of the heme biosynthetic pathway, has for years been considered to be active as a monomer. The crystal structure of Bacillus subtilis ferrochelatase confirmed its monomeric structure. However, animal ferrochelatase was found to form a functional dimer. Data presented here indicate that ferrochelatase from the yeast Saccharomyces cerevisiae is also dimeric. Following two-hybrid studies that had shown an interaction of two ferrochelatase molecules, we employed several different, complementary approaches, such as chemical crosslinking, affinity chromatography, and complementation analysis, to prove that in the yeast cells ferrochelatase forms an active dimer. We have isolated a double mutant, hem15D246V/Y248F, which is probably dimerization-defective. We propose a structural model of yeast ferrochelatase, based on the known structure of the human enzyme, which helps us to understand the differences in dimerization between the wild-type and mutant proteins.  相似文献   

7.
8.
Group A streptococcal M protein, a major virulence factor, is an alpha-helical coiled-coil dimer on the surface of the bacteria. Limited proteolysis of type 57 streptococcus with pepsin released two fragments of the M57 molecule, with apparent molecular weights of 32,000 and 27,000 on SDS-PAGE. However, on gel filtration under nondenaturing conditions, each of these proteins eluted as two distinct molecular forms. The two forms corresponded to their dimeric and monomeric state as compared to the gel filtration characteristics of known dimeric coiled-coil proteins. The results of sedimentation equilibrium measurements were consistent with this, but further indicated that the dimeric form consisted of a dimer in rapid equilibrium with its monomer, whereas the monomeric form does not dimerize. The monomeric form was the predominant species for the 27 kD species, whereas the dimeric form predominated for the 32 kD species. Sequence analysis revealed the 27 kD species to be a truncated derivative of the 32 kD PepM57 species, lacking the N-terminal nonheptad region of the M57 molecule. These data strongly suggested that the N-terminal nonheptad region of PepM57 is important in determining the molecular state of the molecule. Consistent with this, PepM49, another nephritis-associated serotype, which lacks the nonheptad N-terminal region, also eluted as a monomer on gel filtration under nondenaturing conditions. Furthermore, removal of the N-terminal nonheptad segment of the dimeric PepM6 protein converted it into a monomeric form. The dimeric molecular form of both the 32 kD PepM57 and the 27 kD PepM57 did not represent a stable state of assembly, and were susceptible to conversion to the corresponding monomeric molecular forms by simple treatments, such as lyophilization. The 27 kD PepM57 exhibited a greater propensity than the 32 kD species to exist in the monomeric form. The 32 kD species contained the opsonic epitope of the M57 molecule, whereas the 27 kD species lacked the same. This is consistent with the previous reports on the importance of the N-terminal region of M protein for its opsonic activity. Together, these results strongly suggest that, in addition to its importance for the biological function, the N-terminal region of the M protein plays a dominant role in determining the molecular state of the M molecule, as well as its stability.  相似文献   

9.
Both monomeric and dimeric constructs of the B domain of protein A from Staphylococcus aureus have been characterized by NMR, CD and fluorescence spectroscopy. The monomeric form of the protein was synthesized using a novel method incorporating the use of a recombinant, folded, chimeric protein. A comparison of the recombinant monomeric form with the commercially available dimeric form indicates that, although the dimer retains the integrity of the three-helix bundle structure present in the monomer, there are interdomain contacts in the dimeric form. A single long-lived water molecule in the hydrophobic core of the three-helix bundle of monomeric protein A may represent an important stabilizing factor for the three-helix bundle topology.  相似文献   

10.
The OpuA system of Bacillus subtilis is a member of the substrate-binding-protein-dependent ABC transporter superfamily and serves for the uptake of the compatible solute glycine betaine under hyperosmotic growth conditions. Here, we have characterized the nucleotide-binding protein (OpuAA) of the B.subtilis OpuA transporter in vitro. OpuAA was overexpressed heterologously in Escherichia coli as a hexahistidine tag fusion protein and purified to homogeneity by affinity and size exclusion chromatography (SEC). Dynamic monomer/dimer equilibrium was observed for OpuAA, and the K(D) value was determined to be 6 microM. Under high ionic strength assay conditions, the monomer/dimer interconversion was diminished, which enabled separation of both species by SEC and separate analysis of both monomeric and dimeric OpuAA. In the presence of 1 M NaCl, monomeric OpuAA showed a basal ATPase activity (K(M)=0.45 mM; k(2)=2.3 min(-1)), whereas dimeric OpuAA showed little ATPase activity under this condition. The addition of nucleotides influenced the monomer/dimer ratio of OpuAA, demonstrating different oligomeric states during its catalytic cycle. The monomer was the preferred species under post-hydrolysis conditions (e.g. ADP/Mg(2+)), whereas the dimer dominated the nucleotide-free and ATP-bound states. The affinity and stoichiometry of monomeric or dimeric OpuAA/ATP complexes were determined by means of the fluorescent ATP-analog TNP-ATP. One molecule of TNP-ATP was bound in the monomeric state and two TNP-ATP molecules were detected in the dimeric state of OpuAA. Binding of TNP-ADP/Mg(2+) to dimeric OpuAA induced a conformational change that led to the decay of the dimer. On the basis of our data, we propose a model that couples changes in the oligomeric state of OpuAA with ATP hydrolysis.  相似文献   

11.
Deu E  Kirsch JF 《Biochemistry》2007,46(19):5810-5818
The guanidine hydrochloride (GdnHCl) mediated denaturation pathway for the apo form of homodimeric Escherichia coli aspartate aminotransferase (eAATase) (molecular mass = 43.5 kDa/monomer) includes a partially folded monomeric intermediate, M* [Herold, M., and Kirschner, K. (1990) Biochemistry 29, 1907-1913; Birolo, L., Dal Piaz, F., Pucci, P., and Marino, G. (2002) J. Biol. Chem. 277, 17428-17437]. The present investigation of the urea-mediated denaturation of eAATase finds no evidence for an M* species but uncovers a partially denatured dimeric form, D*, that is unpopulated in GdnHCl. Thus, the unfolding process is a function of the employed denaturant. D* retains less than 50% of the native secondary structure (circular dichroism), conserves significant quaternary and tertiary interactions, and unfolds cooperatively (mD*<==>U = 3.4 +/- 0.3 kcal mol-1 M-1). Therefore, the following equilibria obtain in the denaturation of apo-eAATase: D <==> 2M 2M* <==> 2U in GdnHCl and D <==> D* <==> 2U in urea (D = native dimer, M = folded monomer, and U = unfolded state). The free energy of unfolding of apo-eAATase (D <==> 2U) is 36 +/- 3 kcal mol-1, while that for the D* 2U transition is 24 +/- 2 kcal mol-1, both at 1 M standard state and pH 7.5.  相似文献   

12.
Cyanovirin-N can exist in solution in monomeric and domain-swapped dimeric forms, with HIV-antiviral activity being reported for both. Here we present results for CV-N variants that form stable solution dimers: the obligate dimer [DeltaQ50]CV-N and the preferential dimer [S52P]CV-N. These variants exhibit comparable DeltaG values (10.6 +/- 0.5 and 9.4 +/- 0.5 kcal.mol(-1), respectively), similar to that of stabilized, monomeric [P51G]CV-N (9.8 +/- 0.5 kcal.mol(-1)), but significantly higher than wild-type CV-N (4.1 +/- 0.2 kcal.mol(-1)). During folding/unfolding, no stably folded monomer was observed under any condition for the obligate dimer [DeltaQ50]CV-N, whereas two monomeric, metastable species were detected for [S52P]CV-N at low concentrations. This is in contrast to our previous results for [P51G]CV-N and wild-type CV-N, for which the dimeric forms were found to be the metastable species. The dimeric mutants exhibit comparable antiviral activity against HIV and Ebola, similar to that of wild-type CV-N and the stabilized [P51G]CV-N variant.  相似文献   

13.
All mammalian cGMP-dependent protein kinases (PKGs) are dimeric. Dimerization of PKGs involves sequences located near the amino termini, which contain a conserved, extended leucine zipper motif. In PKG Ibeta this includes eight Leu/Ile heptad repeats, and in the present study, deletion and site-directed mutagenesis have been used to systematically delete these repeats or substitute individual Leu/Ile. The enzymatic properties and quaternary structures of these purified PKG mutants have been determined. All had specific enzyme activities comparable to wild type PKG. Simultaneous substitution of alanine at four or more of the Leu/Ile heptad repeats ((L3A/L10A/L17A/I24A), (L31A/I38A/L45A/I52A), (L17A/I24A/L31A/I38A/L45A/I52A), and (L3A/L10A/L45A/I52A)) of the motif produces a monomeric PKG Ibeta. Mutation of two Leu/Ile heptad repeats can produce either a dimeric (L3A/L10A) or monomeric (L17A/I24A and L31A/I38A) PKG. Point mutation of Leu-17 or Ile-24 (L17A or I24A) does not disrupt dimerization. These results suggest that all eight Leu/Ile heptad repeats are involved in dimerization of PKG Ibeta. Six of the eight repeats are sufficient to mediate dimerization, but substitutions at some positions (Leu-17, Ile-24, Leu-31, and Ile-38) appear to have greater impact than others on dimerization. The Ka of cGMP for activation of monomeric mutants (PKG Ibeta (delta1-52) and PKG Ibeta L17A/I24A/L31A/I38A/L45A/I52A) is 2- to 3-fold greater than that for wild type dimeric PKG Ibeta, and there is a corresponding 2- to 3-fold increase in cGMP-dissociation rate of the high affinity cGMP-binding site (site A) of these monomers. These results indicate that dimerization increases sensitivity for cGMP activation of the enzyme.  相似文献   

14.
Cu,Zn superoxide dismutase (SOD1) is a dimeric metal-binding enzyme responsible for the dismutation of toxic superoxide to hydrogen peroxide and oxygen in cells. Mutations at dozens of sites in SOD1 induce amyotrophic lateral sclerosis (ALS), a fatal gain-of-function neurodegenerative disease whose molecular basis is unknown. To obtain insights into effects of the mutations on the folded and unfolded populations of immature monomeric forms whose aggregation or self-association may be responsible for ALS, the thermodynamic and kinetic folding properties of a set of disulfide-reduced and disulfide-oxidized Zn-free and Zn-bound stable monomeric SOD1 variants were compared to properties of the wild-type (WT) protein. The most striking effect of the mutations on the monomer stability was observed for the disulfide-reduced metal-free variants. Whereas the WT and S134N monomers are > 95% folded at neutral pH and 37 °C, A4V, L38V, G93A, and L106V ranged from 50% to ∼ 90% unfolded. The reduction of the disulfide bond was also found to reduce the apparent Zn affinity of the WT monomer by 750-fold, into the nanomolar range, where it may be unable to compete for free Zn in the cell. With the exception of the S134N metal-binding variant, the Zn affinity of disulfide-oxidized SOD1 monomers showed little sensitivity to amino acid replacements. These results suggest a model for SOD1 aggregation where the constant synthesis of ALS variants of SOD1 on ribosomes provides a pool of species in which the increased population of the unfolded state may favor aggregation over productive folding to the native dimeric state.  相似文献   

15.
Factor for inversion stimulation (FIS), a 98-residue homodimeric protein, does not contain tryptophan (Trp) residues but has four tyrosine (Tyr) residues located at positions 38, 51, 69, and 95. The equilibrium denaturation of a P61A mutant of FIS appears to occur via a three-state (N2 ⇆ I2 ⇆ 2U) process involving a dimeric intermediate (I2). Although it was suggested that this intermediate had a denatured C-terminus, direct evidence was lacking. Therefore, three FIS double mutants, P61A/Y38W, P61A/Y69W, and P61A/Y95W were made, and their denaturation was monitored by circular dichroism and Trp fluorescence. Surprisingly, the P61A/Y38W mutant best monitored the N2 ⇆ I2 transition, even though Trp38 is buried within the dimer removed from the C-terminus. In addition, although Trp69 is located on the protein surface, the P61A/Y69W FIS mutant exhibited clearly biphasic denaturation curves. In contrast, P61A/Y95W FIS was the least effective in decoupling the two transitions, exhibiting a monophasic fluorescence transition with modest concentration-dependence. When considering the local environment of the Trp residues and the effect of each mutation on protein stability, these results not only confirm that P61A FIS denatures via a dimeric intermediate involving a disrupted C-terminus but also suggest the occurrence of conformational changes near Tyr38. Thus, the P61A mutation appears to compromise the denaturation cooperativity of FIS by failing to propagate stability to those regions involved mostly in intramolecular interactions. Furthermore, our results highlight the challenge of anticipating the optimal location to engineer a Trp residue for investigating the denaturation mechanism of even small proteins.  相似文献   

16.
Tyr 64, hydrogen-bonded to coenzyme phosphate in Treponema denticola cystalysin, was changed to alanine by site-directed mutagenesis. Spectroscopic and kinetic properties of the Tyr 64 mutant were investigated in an effort to explore the differences in coenzyme structure and kinetic mechanism relative to those of the wild-type enzyme. The wild type displays coenzyme absorbance bands at 418 and 320 nm, previously attributed to ketoenamine and substituted aldamine, respectively. The Tyr 64 mutant exhibits absorption maxima at 412 and 325 nm. However, the fluorescence characteristics of the latter band are consistent with its assignment to the enolimine form of the Schiff base. pK(spec) values of approximately 8.3 and approximately 6.5 were observed in a pH titration of the wild-type and mutant coenzyme absorbances, respectively. Thus, Tyr 64 is probably the residue involved in the nucleophilic attack on C4' of pyridoxal 5'-phosphate (PLP) in the internal aldimine. Although the Tyr 64 mutant exhibits a lower affinity for PLP and lower turnover numbers for alpha,beta-elimination and racemization than the wild type, the pH profiles for their Kd(PLP) and kinetic parameters are very similar. Rapid scanning stopped-flow and chemical quench experiments suggest that, in contrast to the wild type, for which the rate-determining step of alpha,beta-elimination of beta-chloro-L-alanine is the release of pyruvate, the rate-determining step for the mutant in the same reaction is the formation of alpha-aminoacrylate. Altogether, these results provide new insights into the catalytic mechanism of cystalysin and highlight the functional role of Tyr 64.  相似文献   

17.
FK506‐binding protein 22 (FKBP22) from the psychrotophic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) is a homodimeric protein with peptidyl prolyl cis‐trans isomerase (PPIase) activity. Each monomer consists of the N‐terminal domain responsible for dimerization and C‐terminal catalytic domain. To reveal interactions at the dimer interface of SIB1 FKBP22, the crystal structure of the N‐domain of SIB1 FKBP22 (SN‐FKBP22, residues 1‐68) was determined at 1.9 Å resolution. SN‐FKBP22 forms a dimer, in which each monomer consists of three helices (α1, α2, and α3N). In the dimer, two monomers have head‐to‐head interactions, in which residues 8–64 of one monomer form tight interface with the corresponding residues of the other. The interface is featured by the presence of a Val‐Leu knot, in which Val37 and Leu41 of one monomer interact with Val41 and Leu37 of the other, respectively. To examine whether SIB1 FKBP22 is dissociated into the monomers by disruption of this knot, the mutant protein V37R/L41R‐FKBP22, in which Val37 and Leu41 of SIB1 FKBP22 are simultaneously replaced by Arg, was constructed and biochemically characterized. This mutant protein was indistinguishable from the SIB1 FKBP22 derivative lacking the N‐domain in oligomeric state, far‐UV CD spectrum, thermal denaturation curve, PPIase activity, and binding ability to a folding intermediate of protein, suggesting that the N‐domain of V37R/L41R‐FKBP22 is disordered. We propose that a Val‐Leu knot at the dimer interface of SIB1 FKBP22 is important for dimerization and dimerization is required for folding of the N‐domain.  相似文献   

18.
Spontaneous mutations at numerous sites distant from the active site of human immunodeficiency virus type 1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric β-barrel protein, the folding free-energy surface of a pseudo-wild-type variant, HIV-PR?, was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small-amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially folded and fully folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly folded states that have a lower affinity for inhibitors but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant human immunodeficiency virus type 1 protease.  相似文献   

19.
Ascorbate oxidase (AAO) is a large, multidomain, dimeric protein whose folding/unfolding pathway is characterized by a complex, multistep process. Here we used fluorescence correlation spectroscopy to demonstrate the formation of partially folded monomers by pH-induced full dissociation into subunits. Hence, the structural features of monomeric AAO could be studied by fluorescence and CD spectroscopy. We found that the monomers keep their secondary structure, whereas subtle conformational changes in the tertiary structure become apparent. AAO dissociation has also been studied when unfolding the protein by high hydrostatic pressure at different pH values. A strong protein concentration dependence was observed at pH 8, whereas the enzyme was either monomeric or dimeric at pH 10 and 6, respectively. The calculated volume change associated with the unfolding of monomeric AAO, ΔV ~ -55 mL·mol(-1), is in the range observed for most proteins of the same size. These findings demonstrate that partially folded monomeric species might populate the energy landscape of AAO and that the overall AAO stability is crucially controlled by a few quaternary interactions at the subunits' interface.  相似文献   

20.
The intestinal fatty acid binding protein is one of a class of proteins that are primarily beta-sheet and contain a large interior cavity into which ligands bind. A highly conserved region of the protein exists between two adjacent antiparallel strands (denoted as D and E in the structure) that are not within hydrogen bonding distance. A series of single, double, and triple mutations have been constructed in the turn between these two strands. In the wild-type protein, this region has the sequence Leu 64/Gly 65/Val 66. Replacing Leu 64 with either Ala or Gly decreases the stability and the midpoint of the denaturation curve somewhat, whereas mutations at Gly 65 affect the stability slightly, but the protein folds at a rate similar to wild-type and binds oleate. Val 66 appears not to play an important role in maintaining stability. All double or triple mutations that include mutation of Leu 64 result in a large and almost identical loss of stability from the wild-type. As an example of the triple mutants, we investigated the properties of the Leu 64 Ser/Gly 65 Ala/Val 66 Asn mutant. As measured by the change in intrinsic fluorescence, this mutant (and similar triple mutants lacking leucine at position 64) folds much more rapidly than wild-type. The mutant, and others that lack Leu 64, have far-UV CD spectra similar to wild-type, but a different near-UV CD spectrum. The folded form of the protein binds oleate, although less tightly than wild-type. Hydrogen/deuterium exchange studies using electrospray mass spectrometry indicate many more rapidly exchangeable amide protons in the Leu 64 Ser/Gly 65 Ala/Val 66 Asn mutant. We propose that there is a loss of defined structure in the region of the protein near the turn defined by the D and E strands and that the interaction of Leu 64 with other hydrophobic residues located nearby may be responsible for (1) the slow step in the refolding process and (2) the final stabilization of the structure. We suggest the possibility that this region of the protein may be involved in both an early and late step in refolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号