首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray crystal structures of the adducts of human carbonic anhydrase (hCA, EC 4.2.1.1) II complexed with two aromatic sulfonamides incorporating 2-thienylacetamido moieties are reported here. Although, the two inhibitors only differ by the presence of an additional 3-fluoro substituent on the 4-amino-benzenesulfonamide scaffold, their inhibition profiles against the cytosolic isoforms hCA I, II, III, VII and XIII are quite different. These differences were rationalized based on the obtained X-ray crystal structures, and their comparison with other sulfonamide CA inhibitors with clinical applications, such as acetazolamide, methazolamide and dichlorophenamide. The conformations of the 2-thienylacetamido tails in the hCA II adducts of the two sulfonamides were highly different, although the benzenesulfonamide parts were superimposable. Specific interactions between structurally different inhibitors and amino acid residues present only in some considered isoforms have thus been evidenced. These findings can explain the high affinity of the 2-thienylacetamido benzenesulfonamides for some pharmacologically relevant CAs (i.e., isoforms II and VII) being also useful to design high affinity, more selective sulfonamide inhibitors of various CAs.  相似文献   

2.
Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66–4.14?nM) and hCA II inhibitors (Kis of 1.37–3.12?nM) and perfect AChE inhibitors (Kis in the range of 1.87–7.53?nM) compared to acetazolamide as CA inhibitor (Ki: 6.76?nM for hCA I and Ki: 5.85?nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64?nM).  相似文献   

3.
Sulfonamide drugs mediate their main therapeutic effects through modulation of the activity of membrane and cytosolic carbonic anhydrases. How interactions of sulfonamide drugs impact structural properties and activity of carbonic anhydrases requires further study. Here the effect of acetazolamide on the structure and function of bovine carbonic anhydrase II (cytosolic form of the enzyme) was evaluated. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetazolamide. Fluorescence measurements using iodide ions and ANS, along with ASA calculations, revealed that in the presence of acetazolamide minimal conformational changes occurred in the carbonic anhydrase structure. These structural changes, which may involve spatial reorientation of Trp 4 and Trp 190 or some other related aminoacyl residues near the active site, considerably reduced the catalytic activity of the enzyme while its thermal stability was slightly increased. Our binding results indicated that binding of acetazolamide to the protein could occur with a 1:1 ratio, one mole of acetazolamide per one mole of the protein. However, the obtained kinetic results supported the existence of two acetazolamide binding sites on the protein structure. The occupation of each of these binding sites by acetazolamide completely inactivates the enzyme. Advanced analysis of the kinetic results revealed that there are two substrate (p-NPA) binding sites whose simultaneous occupation is required for full enzyme activity. Thus, these studies suggest that the two isoforms of CA II should exist in the medium, each of which contains one substrate binding site (catalytic site) and one acetazolamide binding site. The acetazolamide binding site is equivalent to the catalytic site, thus, inhibiting enzyme activity by a competitive mechanism.  相似文献   

4.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with K(I)'s in the range of 0.228 to 118 μM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

5.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with KI’s in the range of 0.228 to 118 µM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

6.
Human carbonic anhydrase VII (hCA VII) is a cytosolic member of the α-CA family. This enzyme is mainly localized in a number of brain tissues such as the cortex, hippocampus and thalamus and has been noted for its contribution in generating neuronal excitation and seizures. Recently, it has been also proposed that hCA VII may be involved in the control of neuropathic pain, thus its inhibition may offer a new approach in designing pain killers useful for combating neuropathic pain. We report here the X-ray crystallographic structure of a mutated form of human CA VII in complex with acetazolamide, a classical sulfonamide inhibitor. These crystallographic studies provide important implications for the rational drug design of selective CA inhibitors with clinical applications.  相似文献   

7.
The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with a series of phenol derivatives was investigated by using the esterase assay, with 4-nitrophenyl acetate as substrate. 2,6-Dimethylphenol, 2,6-diisopropylphenol (propofol), 2,6-di-t-butylphenol, butylated hydroxytoluene, butylated hydroxyanisole, vanillin, guaiacol, di(2,6-dimethylphenol), di(2,6-diisopropylphenol), di(2,6-di-t-butylphenol), and acetazolamide showed KI values in the range of 37.5–274.5 μM for hCA I and of 0.29–113.5 μM against hCA II, respectively. All these phenols were non-competitive inhibitors with 4-nitrophenylacetate as substrate. Some antioxidant phenol derivatives investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

8.
Abstract

The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with some 3,4-dihydroxypyrrolidine-2,5-dione and 3,5-dihydroxybenzoic acid derivatives, were investigated by using the esterase assay, with 4-nitrophenyl acetate (4-NPA) as substrate. Compounds 1013 showed KI values in the range of 112.7–441.5?μM for hCA I and of 3.5–10.76?μM against hCA II, respectively. These hydroxyl group containing compounds generally were competitive inhibitors. Some hydroxyl group containing compounds investigated here showed effective hCA II inhibitory effects, in the same range as the clinically used sulfonamide acetazolamide, and might be used as leads for generating enzyme inhibitors possibly targeting other CA isoforms which have not been yet assayed for their interactions with such agents.  相似文献   

9.
4-Amino-N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)benzamide was condensed with cyclic-1,3-diketones (dimedone and cyclohexane-1,3-dione) and aromatic aldehydes under microwave irradiation, leading to a series of acridine–acetazolamide conjugates. The new compounds were investigated as inhibitors of carbonic anhydrases (CA, EC 4.2.1.1), and more precisely cytosolic isoforms hCA I, II, VII and membrane-bound one hCA IV. All investigated isoforms were inhibited in low micromolar and nanomolar range by the new compounds. hCA IV and VII were inhibited with KIs in the range of 29.7–708.8 nM (hCA IV), and of 1.3–90.7 nM (hCA VII). For hCA I and II the KIs were in the range of 6.7–335.2 nM (hCA I) and of 0.5–55.4 nM (hCA II). The structure–activity relationships (SAR) for the inhibition of these isoforms with the acridine–acetazolamide conjugates reported here were delineated.  相似文献   

10.
Novel series of 2-morpholino-4-phenylthiazol-5-yl acrylamide derivatives (8as) have been synthesized and explored as a non-sulfonamide class of carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. The newly synthesized molecules were evaluated for their CA inhibitory potency against four isoforms: the cytosolic isozyme hCA I, II as well as trans-membrane tumor associated isoform hCA IX and hCA XII taking acetazolamide (AAZ) as standard drug. The results revealed that most of the compounds showed good activity against hCA II, IX, and XII whereas none of them were active against hCA I (Ki >100 μM). It is observed that the physiologically most important cytosolic isoform hCA II was inhibited by these molecules in the range of Ki 9.3–77.7 μM. It is also found the both the transmembrane isoforms hCA IX and XII were also inhibited with Kis ranging between 54.7–96.7 μM and 4.6–8.8 μM, respectively. The binding modes of the active compounds within the catalytic pockets of hCA II, IX and XII were evaluated by docking studies. This new non-sulfonamide class of selective inhibitors of hCA II, IX and XII over the hCA I isoform may be used for further understanding the physiological roles of some of these isoforms in various pathologies.  相似文献   

11.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisub-stituted-pyridinium-ethylcarboxy moieties (obtained from 2, 4, 6–trisubstituted-pyrylium salts and β-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by CJ vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides. only the membrane-bound enzyme (CA IV) was inhibited. whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, bcn-zolamíde. etc.) were used. unselective inhibition of all CA isozymes (I. II and IV) occurred.  相似文献   

12.
A new approach is proposed for the selective in vivo inhibition of membrane-bound versus cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes with a class of positively-charged, membrane-impermeant sulfonamides. Aromatic/heterocyclic sulfonamides acting as strong (but unselective) inhibitors of this zinc enzyme were derivatized by the attachment of trisubstituted-pyridinium-ethylcarboxy moieties (obtained from 2,4,6-trisubstituted-pyrylium salts and beta-alanine) to the amino, imino, hydrazino or hydroxyl groups present in their molecules. Efficient in vitro inhibition (in the nanomolar range) was observed with some of the new derivatives against three investigated CA isozymes, i.e., hCA I, hCA II (cytosolic forms) and bCA IV (membrane-bound isozyme; h = human; b = bovine isozyme). Due to their salt-like character, the new type of inhibitors reported here, unlike the classical, clinically used compounds (such as acetazolamide, methazolamide, ethoxzolamide), are unable to penetrate biological membranes, as shown by ex vivo and in vivo perfusion experiments in rats. The level of bicarbonate excreted into the urine of the experimental animals perfused with solutions of the new and classical inhibitors suggest that: (i) when using the new type of positively-charged sulfonamides, only the membrane-bound enzyme (CA IV) was inhibited, whereas the cytosolic isozymes (CA I and II) were not affected, (ii) in the experiments in which the classical compounds (acetazolamide, benzolamide, etc.) were used, unselective inhibition of all CA isozymes (I, II and IV) occurred.  相似文献   

13.
Abstract

Grayanotoxin III (GTX3) was investigated for inhibition of all catalytically active mammalian carbonic anhydrase (CA, EC 4.2.1.1) isoforms, i.e. CA I to CA XIV. It showed micromolar inhibition (KIs of 8.01 and 6.13?µM) for cytosolic isoforms CA I and II, respectively. GTX3 showed a submicromolar inhibition (KIs in the range of 0.51–2.15?µM) for the remaining cytosolic (CA III, VII and XIII), membrane-associated/transmembrane (CA IV, IX, XII and XIV), mitochondrial (CA VA and CA VB) and secreted (CA VI) isoforms. This inhibition profile is very different from that of the sulfonamide CA inhibitors (CAIs), which possess different clinical applications. A molecular docking study for GTX3 within the active sites of CA I and II assisted to the understanding of molecular mechanism of the ligand. The interesting inhibition profile, coupled with various possibilities of interacting with the enzyme active site make this family of natural compounds attractive leads for designing novel chemotypes acting as CAIs.  相似文献   

14.
A series of sugar sulfamate/sulfamide derivatives were prepared and assayed as inhibitors of three carbonic anhydrase (CA) isozymes, hCA I, hCA II and bCA IV. Best inhibitory properties were observed for the clinically used antiepileptic drug topiramate, which is a low nanomolar CA II inhibitor, and possesses good inhibitory properties against the other two isozymes investigated here, similarly with acetazolamide, methazolamide or dichlorophenamide. The X-ray structure of the complex of topiramate with hCA II has been solved and it revealed a very tight association of the inhibitor, with a network of seven strong hydrogen bonds fixing topiramate within the active site, in addition to the Zn(II) coordination through the ionized sulfamate moiety. Structural changes in this series of sugar derivatives led to compounds with diminished CA inhibitory properties as compared to topiramate.  相似文献   

15.
The high resolution crystal structure of 5-(2-thienylacetamido)-1,3,4-thiadiazole-2-sulfonamide complexed to human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoform hCA II is reported. The compound binds in a similar manner with acetazolamide when the sulfamoyl–thiadiazolyl–acetamido fragment of the two compounds is considered, but the thienyl tail was positioned in the subpocket 2, rarely observed by other investigated CA inhibitors. This positioning allows interaction with amino acid residues (such as Asn67, Ile91, Gln92 and Val121 which are variable in other isoforms of medicinal chemistry interest, such as hCA I, IX and XII. Indeed, the investigated sulfonamide was a medium potency hCA I and II inhibitor but was highly effective as a hCA IX and XII inhibitor. This different behavior with respect to acetazolamide (a promiscuous inhibitor of all these isoforms) has been explained by resolving the crystal structure, and may be used to design more isoform-selective compounds.  相似文献   

16.
Carbonic anhydrases (CAs, EC 4.2.1.1) are a group of metalloenzymes that play important roles in carbon metabolism, pH regulation, CO2 fixation in plants, ion transport etc., and are found in all eukaryotic and many microbial organisms. This family of enzymes catalyzes the interconversion of CO2 and HCO3?. There are at least 16 different CA isoforms in the alpha structural class (α-CAs) that have been isolated in higher vertebrates, with CA isoform II (CA II) being ubiquitously abundant in all human cell types. CA inhibition has been exploited clinically for decades for various classes of diuretics and anti-glaucoma treatment. The characterization of the overexpression of CA isoform IX (CA IX) in certain tumors has raised interest in CA IX as a diagnostic marker and drug target for aggressive cancers and therefore the development of CA IX specific inhibitors. An important goal in the field of CA is to identify, rationalize, and design potential compounds that will preferentially inhibit CA IX over all other isoforms of CA. The variations in the active sites between isoforms of CA are subtle and this causes non-specific CA inhibition which leads to various side effects. In the case of CA IX inhibition, CA II along with other isoforms of CA provide off-target binding sites which is undesirable for cancer treatment. The focus of this article is on CA IX inhibition and two different structural approaches to CA isoform specific drug designing: tail approach and fragment addition approach.  相似文献   

17.
Abstract

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.  相似文献   

18.
In addition to sulfonamides, metal complexing anions represent the second class of inhibitors of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The first inhibition study of the mitochondrial isozyme CA V (of murine and human origin) with anions is reported here. Inhibition data of the cytosolic isozymes CA I and CA II as well as the membrane-bound isozyme CA IV with a large number of anionic species such as halides, pseudohalides, bicarbonate, nitrate, hydrosulfide, arsenate, sulfamate, and sulfamidate and so on, are also provided for comparison. Isozyme V has an inhibition profile by anions completely different to those of CA I and IV, but similar to that of hCA II, which may have interesting physiological consequences. Similarly to hCA II, the mitochondrial isozymes show micro-nanomolar affinity for sulfonamides such as sulfanilamide and acetazolamide.  相似文献   

19.
The carbonic anhydrases (CAs, EC 4.2.1.1) represent a superfamily of widespread enzymes, which catalyze a crucial biochemical reaction, the reversible hydration of carbon dioxide to bicarbonate and protons. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. In this study, a series of hydroperoxides, alcohols, and acetates were tested for the inhibition of the cytosolic hCA I and II isoenzymes. These compounds inhibited both hCA isozymes in the low nanomolar ranges. These compounds were good hCA I inhibitors (Kis in the range of 24.93–97.99?nM) and hCA II inhibitors (Kis in the range of 26.04–68.56?nM) compared to acetazolamide as CA inhibitor (Ki: 34.50?nM for hCA I and Ki: 28.93?nM for hCA II).  相似文献   

20.
Three series of polycyclic compounds possessing either primary sulfonamide or carboxylic acid moieties as zinc-binding groups were investigated as inhibitors of four physiologically relevant CA isoforms, the cytosolic hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides reported here showed excellent inhibitory effects against isoforms hCA II, IX and XII, but no highly isoform-selective inhibition profiles. On the other hand, the carboxylates selectively inhibited hCA IX (KIs ranging between 40.8 and 92.7 nM) without inhibiting significantly the other isoforms. Sulfonamides/carboxylates incorporating polycyclic ring systems such as benzothiopyranopyrimidine, pyridothiopyranopyrimidine or dihydrobenzothiopyrano[4,3-c]pyrazole may be considered as interesting candidates for exploring the design of isoform-selective CAIs with various pharmacologic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号