首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Among wood‐degrading fungi, lineages holding taxa that selectively metabolize carbohydrates without significant lignin removal (brown rot) are polyphyletic, having evolved multiple times from lignin‐removing white rot fungi. Given the qualitative nature of the ‘brown rot’ classifier, we aimed to quantify and compare the temporal sequence of carbohydrate removal among brown rot clades. Lignocellulose deconstruction was compared among fungi using distinct plant substrates (angiosperm, conifer, grass). Specifically, aspen, pine and corn stalk were harvested over a 16‐week time series from microcosms containing Gloeophyllum trabeum, Fomitopsis pinicola, Ossicaulis lignatilis, Fistulina hepatica, Serpula lacrymans, Wolfiporia cocos or Dacryopinax sp. After quantifying plant mass loss, a thorough compositional analysis was complemented by a saccharification test to determine wood cell wall accessibility. Mass loss and accessibility varied depending on fungal decomposer and substrate, and trajectories of loss for hemicellulosic components and cellulose differed among plant tissue types. At any given stage of decomposition, however, lignocellulose accessibility and the fraction remaining of carbohydrates and lignin within a plant tissue type were generally the same, regardless of fungal isolate. This suggests that the sequence of plant component removal at this typical scale of characterization is shared among these brown rot lineages, despite their diverse genomes and secretomes.  相似文献   

2.
3.
Spruce needles of different age, litter materials and soil samples from the L-, O-and A-horizons of a mor profile were analysed by temperature-programmed pyrolysis (Py) in combination with field ionization mass spectrometry (FIMS). The integrated Py-FI mass spectra give characteristic fingerprints of the biomaterials investigated. The application of principal component analysis to the mass spectral data results in a clear discrimination and classification of the samples reflecting the chemical modifications and transformations of organic matter by biochemical and biogeochemical processes. The chemical compositions are determined by processes such as enrichment and/or translocation of plant constituents (e.g. carbohydrates, lignin, lipids, suberin, and aliphatic polymers) during maturation and senescence of needles; amendment of new components; decomposition; selective preservation and humification processes in the soil environment.During needle maturation, major chemical changes include the decrease of carbohydrate content, condensation of lignin, and crosslinking of waxes. Senescent needles are characterized by lower contents of carbohydrates and lower yields of monomeric pyrolysis products from lignin. The contribution of different litter materials to the humus layer can be estimated by differences in chemical composition. During litter decomposition and humification on the forest floor, carbohydrate content decreases rapidly. The lignin content remains almost constant but some subunits are continuously oxidized. Wax material accumulates until the mechnical disintegration of the needle occurs. In the O-horizons polymeric aliphatic materials are enriched in humified plant remains. A constant increase of aryl-alkyl esters from suberin in the O-horizons is due to both root input and selective preservation. In general, mainly aliphatic polymers and aryl-alkyl esters accumulate during the genesis of mor profiles under conifers.  相似文献   

4.
Bryophytes are the second largest taxonomic group in the plant kingdom; yet, studies conducted to better understand their chemical composition are rare. The aim of this study was to characterize the chemical composition of bryophytes common in Northern Europe by using elemental, spectral, and non‐destructive analytical methods, such as Fourier transform IR spectrometry (FT‐IR), solid‐phase 13C‐NMR spectrometry, and pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS), for the purpose of investigating their chemotaxonomic relationships on the basis of chemical‐composition data. The results of all these analyses showed that bryophytes consist mainly of carbohydrates. Judging by FT‐IR spectra, the OH groups in combination of C? O groups were the most abundant groups. The 13C‐NMR spectra provided information on the presence of such compounds as phenolics and lipids. It was found that the amount of phenolic compounds in bryophytes is relatively small. This finding definitely confirmed the absence of lignin in the studied bryophytes. Cluster analysis was used to better understand differences in the chemical composition of bryophyte samples and to evaluate possible usage of these methods in the chemotaxonomy of bryophytes.  相似文献   

5.
This study examines the diet of the round goby (Neogobius melanostomus) in the western basin of Lake Erie. As an invasive benthic feeder, the round goby has the potential to affect smallmouth bass and other native species. Round goby (n = 100) were collected during summer 2011 and stomach contents were examined to determine diet patterns and possible ontogenetic diet shifts. Individual round goby were grouped by sex, size (small < 65 mm, large ≥ 65 mm), depth of habitat (shallow < 2 m, deep > 5 m), and habitat type (natural shallows, anthropogenically modified shallows, and deep waters). Gut fullness ranged from 10 to 100% with 23 stomachs presenting 100% fullness. Round goby consumed 27 different food items including abiotic (sand grains, gravel), floral (algae, fine leaved vascular plants), and fauna items. The Index of Relative Importance (IRI) and comparative z‐tests were used to assess correlations and differences. Two‐way z‐tests revealed a significant difference in mouth gape related to size (z = ?5.56377, P = 2.64e‐08), and habitat depth (z = 3.34262, P = 0.00083). A significant linear correlation was also found between mouth gape standardized by head length (HL) for both males (P = 2.63e‐9) and females (P = 1.3e‐4). Two‐way z‐tests also revealed a significant difference in gonadosomatic index (GSI) related to sex (z = 6.07727, P = 6.11248e‐10), but not size. A significant difference in gut fullness was also found related to sex (z = ?3.34743, P = 0.00082), habitat depth (z = 3.16336, P = 0.00156), and habitat type (z = ?2.7398, P = 0.00615). IRI values demonstrated a diet selective of veliger mussels (IRI = 2462.01), juvenile mussels (IRI = 1073.03), cladocerans (IRI = 4804.31), and chironomids (IRI = 1012.12). While previous studies have focused on round goby diet shifts from macroinvertebrates to bivalves, most studies did not evaluate changes in diet among multiple categories. Furthering knowledge of multiple aspects of goby diet may aid in developing management techniques to deter future round goby invasion.  相似文献   

6.
7.
Seasonal carbohydrates allocation by Typha domingensis was evaluated to identify the potential physiological weaknesses in the growth cycle of this plant in Lake Burullus, Egypt. Monthly plant samples (February–October 2014) were separated into shoots, roots and rhizomes to evaluate the seasonal changes in water‐soluble carbohydrates (WSC), starch and total non‐structural carbohydrates (TNC) for each plant organ. The present study indicated that rhizomes are strong carbohydrates sink during the life cycle of T. domingensis. Starch represented the greatest part of the TNC pool, surpassing the concentration of WSC 1.8–4.3 times. The WSC, starch and TNC concentrations of T. domingensis below‐ground organs (rhizomes and roots) were high at the beginning of the vegetative period (February); they reached their minima in March to support the shoots growth, then were followed by a gradual increase due to the translocation from shoots. The time when T. domingensis is expected to be most susceptible to a management technique is at the point in the seasonal cycle when the stored carbohydrates are at the lowest (in March).  相似文献   

8.
Vascular plants have lignified tissues that transport water, minerals, and photosynthetic products throughout the plant. They are the dominant primary producers in terrestrial ecosystems and capture significant quantities of atmospheric carbon dioxide (CO2) through photosynthesis. Some of the fixed CO2 is respired by the plant directly, with additional CO2 lost from rhizodeposits metabolized by root-associated soil microorganisms. Microbially-mediated mineralization of organic nitrogen (N) from plant byproducts (rhizodeposits, dead plant residues) followed by nitrification generates another greenhouse gas, nitrous oxide (N2O). In anaerobic soils, reduction of nitrate by microbial denitrifiers also produces N2O. The plant-microbial interactions that result in CO2 and N2O emissions from soil could be affected by genetic modification. Down-regulation of genes controlling lignin biosynthesis to achieve lower lignin concentration or a lower guaiacyl:syringyl (G:S) ratio in above-ground biomass is anticipated to produce forage crops with greater digestibility, improve short rotation woody crops for the wood-pulping industry and create second generation biofuel crops with low ligno-cellulosic content, but unharvested residues from such crops are expected to decompose quickly, potentially increasing CO2 and N2O emissions from soil. The objective of this review are the following: 1) to describe how plants influence CO2 and N2O emissions from soil during their life cycle; 2) to explain how plant residue chemistry affects its mineralization, contributing to CO2 and N2O emissions from soil; and 3) to show how modification of plant lignin biosynthesis could influence CO2 and N2O emissions from soil, based on experimental data from genetically modified cell wall mutants of Arabidopsis thaliana. Conceptual models of plants with modified lignin biosynthesis show how changes in phenology, morphology and biomass production alter the allocation of photosynthetic products and carbon (C) losses through rhizodeposition and respiration during their life cycle, and the chemical composition of plant residues. Feedbacks on the soil environment (mineral N concentration, soil moisture, microbial communities, aggregation) affecting CO2 and N2O emissions are described. Down-regulation of the Cinnamoyl CoA Reductase 1 (CCR1) gene is an excellent target for highly digestable forages and biofuel crops, but A. thaliana with this mutation has lower plant biomass and fertility, prolonged vegetative growth and plant residues that are more susceptible to biodegradation, leading to greater CO2 and N2O emissions from soil in the short term. The challenge in future crop breeding efforts will be to select tissue-specific genes for lignin biosynthesis that meet commercial demands without compromising soil CO2 and N2O emission goals.  相似文献   

9.
Although Miscanthus sinensis grasslands (Misc‐GL) and Cryptomeria japonica forest plantations (Cryp‐FP) are proposed bioenergy feedstock systems, their relative capacity to sequester C may be an important factor in determining their potential for sustainable bioenergy production. Therefore, our objective was to quantify changes in soil C sequestration 47 years after a Misc‐GL was converted to a Cryp‐FP. The study was conducted on adjacent Misc‐GL and Cryp‐FP located on Mt. Aso, Kumamoto, Japan. After Cryp‐FP establishment, only the Misc‐GL continued to be managed by annual burning every March. Mass C and N, δ13C, and δ15N at 0–30 cm depth were measured in 5 cm increments. Carbon and N concentrations, C:N ratio, δ13C, and δ15N were measured in litter and/or ash, and rhizomes or roots. Although C input in Misc‐GL by M. sinensis was approximately 36% of that in Cryp‐FP by C. japonica, mean annual soil C sequestration in Misc‐GL (503 kg C ha?1 yr?1) was higher than that in Cryp‐FP (284 kg C ha?1 yr?1). This was likely the result of larger C input from aboveground litter to soil, C‐quality (C:N ratio and lignin concentration in aboveground litter) and possibly more recalcitrant C (charcoal) inputs by annual burning. The difference in soil δ15N between sites indicated that organic C with N had greater cycling between heterotrophic microbes and soil and produces more recalcitrant humus in Misc‐GL than in Cryp‐FP. Our data indicate that in terms of soil C sequestration, maintenance of Misc‐GL may be more advantageous than conversion to Cryp‐FP in Aso, Japan.  相似文献   

10.
11.
12.
13.
Because of their unique tolerance to desiccation, the so‐called resurrection plants can be considered as excellent models for extensive research on plant reactions to environmental stresses. The vegetative tissues of these species are able to withstand long dry periods and to recover very rapidly upon re‐watering. This study follows the dynamics of key components involved in leaf tissue antioxidant systems under desiccation in the resurrection plant Haberlea rhodopensis and the related non‐resurrection species Chirita eberhardtii. In H. rhodopensis these parameters were also followed during recovery after full drying. A well‐defined test system was developed to characterise the different responses of the two species under drought stress. Results show that levels of H2O2 decreased significantly both in H. rhodopensis and C. eberhardtii, but that accumulation of malondialdehyde was much more pronounced in the desiccation‐tolerant H. rhodopensis than in the non‐resurrection C. eberhardtii. A putative protective role could be attributed to accumulation of total phenols in H. rhodopensis during the late stages of drying. The total glutathione concentration and GSSG/GSH ratio increased upon complete dehydration of H. rhodopensis. Our data on soluble sugars suggest that sugar ratios might be important for plant desiccation tolerance. An array of different adaptations could thus be responsible for the resurrection phenotype of H. rhodopensis.  相似文献   

14.
Decomposition of soybean grown under elevated concentrations of CO2 and O3   总被引:1,自引:0,他引:1  
A critical global climate change issue is how increasing concentrations of atmospheric CO2 and ground‐level O3 will affect agricultural productivity. This includes effects on decomposition of residues left in the field and availability of mineral nutrients to subsequent crops. To address questions about decomposition processes, a 2‐year experiment was conducted to determine the chemistry and decomposition rate of aboveground residues of soybean (Glycine max (L.) Merr.) grown under reciprocal combinations of low and high concentrations of CO2 and O3 in open‐top field chambers. The CO2 treatments were ambient (370 μmol mol?1) and elevated (714 μmol mol?1) levels (daytime 12 h averages). Ozone treatments were charcoal‐filtered air (21 nmol mol?1) and nonfiltered air plus 1.5 times ambient O3 (74 nmol mol?1) 12 h day?1. Elevated CO2 increased aboveground postharvest residue production by 28–56% while elevated O3 suppressed it by 15–46%. In combination, inhibitory effects of added O3 on biomass production were largely negated by elevated CO2. Plant residue chemistry was generally unaffected by elevated CO2, except for an increase in leaf residue lignin concentration. Leaf residues from the elevated O3 treatments had lower concentrations of nonstructural carbohydrates, but higher N, fiber, and lignin levels. Chemical composition of petiole, stem, and pod husk residues was only marginally affected by the elevated gas treatments. Treatment effects on plant biomass production, however, influenced the content of chemical constituents on an areal basis. Elevated CO2 increased the mass per square meter of nonstructural carbohydrates, phenolics, N, cellulose, and lignin by 24–46%. Elevated O3 decreased the mass per square meter of these constituents by 30–48%, while elevated CO2 largely ameliorated the added O3 effect. Carbon mineralization rates of component residues from the elevated gas treatments were not significantly different from the control. However, N immobilization increased in soils containing petiole and stem residues from the elevated CO2, O3, and combined gas treatments. Mass loss of decomposing leaf residue from the added O3 and combined gas treatments was 48% less than the control treatment after 20 weeks, while differences in decomposition of petiole, stem, and husk residues among treatments were minor. Decreased decomposition of leaf residues was correlated with lower starch and higher lignin levels. However, leaf residues only comprised about 20% of the total residue biomass assayed so treatment effects on mass loss of total aboveground residues were relatively small. The primary influence of elevated atmospheric CO2 and O3 concentrations on decomposition processes is apt to arise from effects on residue mass input, which is increased by elevated CO2 and suppressed by O3.  相似文献   

15.
Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant‐derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60‐based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60SEKDEL) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self‐fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48–400 µg potato‐derived VP60 [ Castanon, S., Marin, M.S., Martin‐Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73 , 4452–4455; Castanon, S., Martin‐Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162 , 87–95] to 0.56–0.28 µg antigenic VP60 (measured with VP60 enzyme‐linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea‐derived CTB::VP60 showed anti‐VP60‐specific antibodies, similar to RikaVacc®‐immunized rabbits, and survived RHDV challenge.  相似文献   

16.
The effect of a non‐host plant, Solanum myriacanthum, on ovarian dynamics and longevity of Leptinotarsa undecimlineata (Stål) (Coleoptera: Chrysomelidae) was studied under laboratory conditions. Females reared on the natural host, S. lanceolatum, served as controls. Female beetles did not accumulate eggs on the non‐host. After continuous exposure to S. myriacanthum, the production of basal oocytes was diminished and oocytes were reabsorbed. Oocyte size, however, was not affected when compared to females fed with S. lanceolatum. In control females, the first mature eggs appeared at 34 days old. No eggs matured in females fed with the non‐host in the 54‐day duration of our experiment. Continuous exposure to the non‐host resulted in significantly less resorption of reproductive resources than a stress period of 20 days on the non‐host. Egg resorption was completely reversible after the preferred host was re‐offered for another 20 days. Further studies under field conditions will be necessary to understand why this Leptinotarsa species uses only one of two sympatric Solanum species.  相似文献   

17.
A systematic screen of volatile terpene production in the glandular trichomes of 79 accessions of Solanum habrochaites was conducted and revealed the presence of 21 mono‐ and sesquiterpenes that exhibit a range of qualitative and quantitative variation. Hierarchical clustering identified distinct terpene phenotypic modules with shared patterns of terpene accumulation across accessions. Several terpene modules could be assigned to previously identified terpene synthase (TPS) activities that included members of the TPS‐e/f subfamily that utilize the unusual cis‐prenyl diphosphate substrates neryl diphosphate and 2z,6z‐farnesyl diphosphate. DNA sequencing and in vitro enzyme activity analysis of TPS‐e/f members from S. habrochaites identified three previously unassigned enzyme activities that utilize these cisoid substrates. These produce either the monoterpenes α‐pinene and limonene, or the sesquiterpene 7‐epizingiberene, with the in vitro analyses that recapitulated the trichome chemistry found in planta. Comparison of the distribution of S. habrochaites accessions with terpene content revealed a strong preference for the presence of particular TPS20 alleles at distinct geographic locations. This study reveals that the unusually high intra‐specific variation of volatile terpene synthesis in glandular trichomes of S. habrochaites is due at least in part to evolution at the TPS20 locus.  相似文献   

18.
The complex of species formed by eggplant (Solanum melongena L.) and its wild and weedy relatives (mainly S. incanum L. and S. insanum L.) is characterised by an extreme morphological divergence that is not always associated with genetic variation. The taxonomy of so‐called ‘spiny Solanum’ species (subgenus Leptostemonum) is therefore extremely unclear. Cultivated eggplant lacks resistance to pests that frequently occur among the wild forms and species. As these wild plants are a potential gene pool for improvement of eggplant cultivars, knowledge of the characteristics of taxonomic relations between plants of different origin is crucial. We suggest using the leaf cuticular n‐alkane chain length distribution pattern as an alternative taxonomic marker for eggplant and related species. The results are in good agreement with current knowledge of the systematics of these plants; at the same time, the method developed here is useful for verifying plant identification based on morphological traits. Analysis of 13 eggplant cultivars, five accessions of S. incanum and two lines of S. macrocarpon enabled the intraspecific variation within eggplant to be assessed as low. There was wide variability among S. incanum accessions, probably because plants described as S. incanum are members of a number of different species. Some Asian accessions (sometimes described as S. insanum) were found to be almost identical to S. melongena, while a truly wild African S. incanum plant showed extensive similarity. The usefulness of the chemotaxonomic approach in dealing with the S. melongenaS. incanum complex is discussed.  相似文献   

19.
During host plant selection and particularly after alighting on a plant, chemical cues from the plant surface influence an insect's acceptance of the plant and, subsequently, its egg‐laying behaviour. Primary metabolites in the phylloplane may be more important than hitherto known. We have shown that soluble carbohydrates, such as glucose, fructose, and sucrose, and sugar alcohols, such as sorbitol, quebrachitol, and myo‐inositol, can be detected by insects after contacting the plant and that they positively influence egg‐laying of the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), on apple trees. We addressed the question whether a lack of these substances could also explain apple tree resistance to C. pomonella in terms of reduced egg‐laying. Leaf surface washings were collected in an apple orchard by spraying water on the resistant cultivar X65‐11 and on the susceptible cultivar P5R50A4. The washings were tested on a nylon cloth on isolated females under no‐choice conditions. The washings were analysed and synthetic blends, each consisting of the six metabolites in the proportions established in the leaf surface washings of both cultivars, were then tested for their effect on egg‐laying of C. pomonella. Dose–response egg‐laying tests were carried out on substrates impregnated with the X65‐11 leaf surface blend at 1, 100, 1 000, and 10 000 times the natural dose. Egg‐laying behaviour in the bioassays with leaf surface washings of both cultivars closely resembled egg‐laying in the orchard. Washings of P5R50A4 stimulated egg‐laying to a greater extent than those of X65‐11 and the water control. Synthetic blends reduced substrate acceptance and egg‐laying, compared to the washings of X65‐11. Ratios between components within the blend are responsible for this resistance. In conclusion, quantities and ratios of the six primary metabolites found on the leaf surface may influence host preference of C. pomonella as well as their egg‐laying behaviour, thus they may play a role in the trees’ resistance to the codling moth.  相似文献   

20.
Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin‐related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose‐to‐ethanol conversion process. Down‐regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21–3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8–O–4‐ and 4–O–5‐coupled sinapaldehyde units, as well as resistant inter‐unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester‐linked to cell walls was measured for the first time in a lignin‐related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild‐type BdCAD1 allele restored the wild‐type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild‐type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre‐treated with alkaline easier without compromising plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号