首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All cell membranes are composed of glycerol phosphate phospholipids, and this commonality argues for the presence of such phospholipids in the last common ancestor, or cenancestor. However, phospholipid biosynthesis is very different between bacteria and archaea, leading to the suggestion that the cenancestor was devoid of phospholipid membranes. Recent phylogenomic studies challenge this view, suggesting that the cenancestor did possess complex phospholipid membranes. Here, we discuss the implications of these recent findings for membrane evolution in archaea and bacteria, and for the origin of the eukaryotic cell.  相似文献   

2.
3.
Zinc is one of the metal ions essential for life, as it is required for the proper functioning of a large number of proteins. Despite its importance, the annotation of zinc-binding proteins in gene banks or protein domain databases still has significant room for improvement. In the present work, we compiled a list of known zinc-binding protein domains and of known zinc-binding sequence motifs (zinc-binding patterns), and then used them jointly to analyze the proteome of 57 different organisms to obtain an overview of zinc usage by archaeal, bacterial, and eukaryotic organisms. Zinc-binding proteins are an abundant fraction of these proteomes, ranging between 4% and 10%. The number of zinc-binding proteins correlates linearly with the total number of proteins encoded by the genome of an organism, but the proportionality constant of Eukaryota (8.8%) is significantly higher than that observed in Bacteria and Archaea (from 5% to 6%). Most of this enrichment is due to the larger portfolio of regulatory proteins in Eukaryota.  相似文献   

4.
Andreini C  Banci L  Bertini I  Elmi S  Rosato A 《Proteins》2007,67(2):317-324
Metalloproteins are proteins capable of binding one or more metal ions, which are often required for their biological function or for regulation of their activities or for structural purposes. In high-throughput genome-level protein investigation efforts, such as Structural Genomics, the systematic experimental characterization of metal-binding properties (i.e. the investigation of the metalloproteome) is not always pursued, and remains far from trivial. In the present work we have applied a bioinformatic approach to investigate the occurrence of (putative) non-heme iron-binding proteins in 57 different organisms spanning the entire tree of life. It is found that the non-heme iron-proteome constitutes between 1% and 10% of the entire proteome of an organism. However, the iron-proteome constitutes a higher fraction of the proteome in archaea (on average 7.1% +/- 2.1%) than in bacteria (3.9% +/- 1.6%) and in eukaryota (1.1% +/- 0.4%). The analysis of the function of each putative iron-protein identified suggests that extant organisms have inherited the large majority of their iron-proteome from the last common ancestor.  相似文献   

5.
6.
The high-affinity cohesin–dockerin interaction was originally discovered as modular components, which mediate the assembly of the various subunits of the multienzyme cellulosome complex that characterizes some cellulolytic bacteria. Until recently, the presence of cohesins and dockerins within a bacterial proteome was considered a definitive signature of a cellulosome-producing bacterium. Widespread genome sequencing has since revealed a wealth of putative cohesin- and dockerin-containing proteins in Bacteria, Archaea, and in primitive eukaryotes. The newly identified modules appear to serve diverse functions that are clearly distinct from the classical cellulosome archetype, and the vast majority of parent proteins are not predicted glycoside hydrolases. In most cases, only a few such genes have been identified in a given microorganism, which encode proteins containing but a single cohesin and/or dockerin. In some cases, one or the other module appears to be missing from a given species, and in other cases both modules occur within the same protein. This review provides a bioinformatics-based survey of the current status of cohesin- and dockerin-like sequences in species from the Bacteria, Archaea, and Eukarya. Surprisingly, many identified modules and their parent proteins are clearly unrelated to cellulosomes. The cellulosome paradigm may thus be the exception rather than the rule for bacterial, archaeal, and eukaryotic employment of cohesin and dockerin modules.  相似文献   

7.
The question as to the origin and relationship between the three domains of life is lodged in a phylogenetic impasse. The dominant paradigm is to see the three domains as separated. However, the recently characterized bacterial species have suggested continuity between the three domains. Here, we review the evidence in support of this hypothesis and evaluate the implications for and against the models of the origin of the three domains of life. The existence of intermediate steps between the three domains discards the need for fusion to explain eukaryogenesis and suggests that the last universal common ancestor was complex. We propose a scenario in which the ancestor of the current bacterial Planctomycetes, Verrucomicrobiae and Chlamydiae superphylum was related to the last archaeal and eukaryotic common ancestor, thus providing a way out of the phylogenetic impasse.  相似文献   

8.
Robinson NP  Bell SD 《The FEBS journal》2005,272(15):3757-3766
Replication of DNA is essential for the propagation of life. It is somewhat surprising then that, despite the vital nature of this process, cellular organisms show a great deal of variety in the mechanisms that they employ to ensure appropriate genome duplication. This diversity is manifested along classical evolutionary lines, with distinct combinations of replicon architecture and replication proteins being found in the three domains of life: the Bacteria, the Eukarya and the Archaea. Furthermore, although there are mechanistic parallels, even within a given domain of life, the way origins of replication are defined shows remarkable variation.  相似文献   

9.
Discrepancies in phylogenetic trees of bacteria and archaea are often explained as lateral gene transfer events. However, such discrepancies may also be due to phylogenetic artifacts or orthology assignment problems. A first step that may help to resolve this dilemma is to estimate the extent of phylogenetic inconsistencies in trees of prokaryotes in comparison with those of higher eukaryotes, where no lateral gene transfer is expected. To test this, we used 21 proteomes each of eukaryotes (mainly opisthokonts), proteobacteria, and archaea that spanned equivalent levels of genetic divergence. In each domain of life, we defined a set of putative orthologous sequences using a phylogenetic-based orthology protocol and, as a reference topology, we used a tree constructed with concatenated genes of each domain. Our results show, for most of the tests performed, that the magnitude of topological inconsistencies with respect to the reference tree was very similar in the trees of proteobacteria and eukaryotes. When clade support was taken into account, prokaryotes showed some more inconsistencies, but then all values were very low. Discrepancies were only consistently higher in archaea but, as shown by simulation analysis, this is likely due to the particular tree of the archaeal species used here being more difficult to reconstruct, whereas the trees of proteobacteria and eukaryotes were of similar difficulty. Although these results are based on a relatively small number of genes, it seems that phylogenetic reconstruction problems, including orthology assignment problems, have a similar overall effect over prokaryotic and eukaryotic trees based on single genes. Consequently, lateral gene transfer between distant prokaryotic species may have been more rare than previously thought, which opens the way to obtain the tree of life of bacterial and archaeal species using genomic data and the concatenation of adequate genes, in the same way as it is usually done in eukaryotes.  相似文献   

10.

Background

Chromosomal orthologs can reveal the shared ancestral gene set and their evolutionary trends. Additionally, physico-chemical properties of encoded proteins could provide information about functional adaptation and ecological niche requirements.

Results

We analyzed 7080 genes (five groups of 1416 orthologs each) from Rhizobiales species (S. meliloti, R. etli, and M. loti, plant symbionts; A. tumefaciens, a plant pathogen; and B. melitensis, an animal pathogen). We evaluated their phylogenetic relationships and observed three main topologies. The first, with closer association of R. etli to A. tumefaciens; the second with R. etli closer to S. meliloti; and the third with A. tumefaciens and S. meliloti as the closest pair. This was not unusual, given the close relatedness of these three species. We calculated the synonymous (dS) and nonsynonymous (dN) substitution rates of these orthologs, and found that informational and metabolic functions showed relatively low dN rates; in contrast, genes from hypothetical functions and cellular processes showed high dN rates. An alternative measure of sequence variability, percentage of changes by species, was used to evaluate the most specific proportion of amino acid residues from alignments. When dN was compared with that measure a high correlation was obtained, revealing that much of evolutive information was extracted with the percentage of changes by species at the amino acid level. By analyzing the sequence variability of orthologs with a set of five properties (polarity, electrostatic charge, formation of secondary structures, molecular volume, and amino acid composition), we found that physico-chemical characteristics of proteins correlated with specific functional roles, and association of species did not follow their typical phylogeny, probably reflecting more adaptation to their life styles and niche preferences. In addition, orthologs with low dN rates had residues with more positive values of polarity, volume and electrostatic charge.

Conclusions

These findings revealed that even when orthologs perform the same function in each genomic background, their sequences reveal important evolutionary tendencies and differences related to adaptation. This article was reviewed by: Dr. Purificación López-García, Prof. Jeffrey Townsend (nominated by Dr. J. Peter Gogarten), and Ms. Olga Kamneva.  相似文献   

11.
Dehydrogenases from all three domains of life cleave RNA   总被引:6,自引:0,他引:6  
Specific interactions of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with RNA have been reported both in vitro and in vivo. We show that eukaryotic and bacterial GAPDH and two proteins from the hyperthermophilic archaeon Sulfolobus solfataricus, which are annotated as dehydrogenases, cleave RNA producing similar degradation patterns. RNA cleavage is most efficient at 60 degrees C, at MgCl(2) concentrations up to 5 mm, and takes place between pyrimidine and adenosine. The RNase active center of the putative aspartate semialdehyde dehydrogenase from S. solfataricus is located within the N-terminal 73 amino acids, which comprise the first mononucleotide-binding site of the predicted Rossmann fold. Thus, RNA cleavage has to be taken into account in the ongoing discussion of the possible biological function of RNA binding by dehydrogenases.  相似文献   

12.
13.

Background  

YidC/Oxa/Alb3 family includes a group of conserved translocases that are essential for protein insertion into inner membranes of bacteria and mitochondria, and thylakoid membranes of chloroplasts. Because mitochondria and chloroplasts are of bacterial origin, Oxa and Alb3, like many other mitochondrial/chloroplastic proteins, are hypothetically derived from the pre-existing protein (YidC) of bacterial endosymbionts. Here, we test this hypothesis and investigate the evolutionary history of the whole YidC/Oxa/Alb3 family in the three domains of life.  相似文献   

14.
15.
Sliding clamps are ring-shaped proteins that tether DNA polymerases to DNA, which enables the rapid and processive synthesis of both leading and lagging strands at the replication fork. The clamp-loading machinery must repeatedly load sliding-clamp factors onto primed sites at the replication fork. Recent structural and biochemical analyses provide unique insights into how these clamp-loading ATPase machines function to load clamps onto the DNA. Moreover, these studies highlight the evolutionary conservation of the clamp-loading process in the three domains of life.  相似文献   

16.
Although protein expression is regulated both temporally and spatially, most proteins have an intrinsic, "typical" range of functionally effective abundance levels. These extend from a few molecules per cell for signaling proteins, to millions of molecules for structural proteins. When addressing fundamental questions related to protein evolution, translation and folding, but also in routine laboratory work, a simple rough estimate of the average wild type abundance of each detectable protein in an organism is often desirable. Here, we introduce a meta-resource dedicated to integrating information on absolute protein abundance levels; we place particular emphasis on deep coverage, consistent post-processing and comparability across different organisms. Publicly available experimental data are mapped onto a common namespace and, in the case of tandem mass spectrometry data, re-processed using a standardized spectral counting pipeline. By aggregating and averaging over the various samples, conditions and cell-types, the resulting integrated data set achieves increased coverage and a high dynamic range. We score and rank each contributing, individual data set by assessing its consistency against externally provided protein-network information, and demonstrate that our weighted integration exhibits more consistency than the data sets individually. The current PaxDb-release 2.1 (at http://pax-db.org/) presents whole-organism data as well as tissue-resolved data, and covers 85,000 proteins in 12 model organisms. All values can be seamlessly compared across organisms via pre-computed orthology relationships.  相似文献   

17.
N-linked protein glycosylation was originally thought to be specific to eukaryotes, but evidence of this post-translational modification has now been discovered across all domains of life: Eucarya, Bacteria, and Archaea. In all cases, the glycans are first assembled in a step-wise manner on a polyisoprenoid carrier lipid. At some stage of lipid-linked oligosaccharide synthesis, the glycan is flipped across a membrane. Subsequently, the completed glycan is transferred to specific asparagine residues on the protein of interest. Interestingly, though the N-glycosylation pathway seems to be conserved, the biosynthetic pathways of the polyisoprenoid carriers, the specific structures of the carriers, and the glycan residues added to the carriers vary widely. In this review we will elucidate how organisms in each basic domain of life synthesize the polyisoprenoids that they utilize for N-linked glycosylation and briefly discuss the subsequent modifications of the lipid to generate a lipid-linked oligosaccharide.  相似文献   

18.
To investigate diverse enzyme structure-function combination (SFC) types in different species, 34 different genome sequences were annotated using the protein catalytic domain database SCOPEC (http://www.enzome.com/enzome/), in which both the structure and function for each entry are known. Annotated enzymes with catalytic domains from the same SCOP superfamily are considered to have an identical structure. Annotated enzymes sharing the identical three-digit EC number are considered to have the same enzymatic function. Results reveal that the different SFC types for enzymes identified in archaea, bacteria and eukaryota are 137, 300 and 313, respectively. About 80% of the SFCs identified in archaea can be consistently found in bacteria and eukaryota species, whereas 28% and 35% combination types in bacteria and eukaryota respectively are unique to their corresponding groups. The number of functions per structure and the number of structures per function for the annotated sequences were measured in different species. Furthermore, a new concept was proposed to represent enzymatic structures as a functional similarity network. Thus, the current study will be helpful to enhance the global view on the evolution of enzymatic structure and function.  相似文献   

19.
Salt-bridges play a unique role in the structural and functional stability of proteins, especially under harsh environments. How these salt-bridges contribute to the overall thermodynamic stability of protein structure and function across different domains of life is elusive still date. To address the issue, statistical analyses on the energies of salt-bridges, involved in proteins' structure and function, are performed across three domains of life, that is, archaea, eubacteria, and eukarya. Results show that although the majority of salt-bridges are stable and conserved, yet the stability of archaeal proteins (∆∆Gnet = −5.06 ± 3.8) is much more than that of eubacteria (∆∆Gnet = −3.7 ± 2.9) and eukarya (∆∆Gnet = −3.54 ± 3.1). Unlike earlier study with archaea, in eukarya and eubacteria, not all buried salt-bridge in our dataset are stable. Buried salt-bridges play surprising role in protein stability, whose variations are clearly observed among these domains. Greater desolvation penalty of buried salt-bridges is compensated by stable network of salt-bridges apart from equal contribution of bridge and background energy terms. On the basis proteins' secondary structure, topology, and evolution, our observation shows that salt-bridges when present closer to each other in sequence tend to form a greater number. Overall, our comparative study provides insight into the role of specific electrostatic interactions in proteins from different domains of life, which we hope, would be useful for protein engineering and bioinformatics study.  相似文献   

20.
Comparative studies of the proteomes from different organisms have provided valuable information about protein domain distribution in the kingdoms of life. Earlier studies have been limited by the fact that only about 50% of the proteomes could be matched to a domain. Here, we have extended these studies by including less well-defined domain definitions, Pfam-B and clustered domains, MAS, in addition to Pfam-A and SCOP domains. It was found that a significant fraction of these domain families are homologous to Pfam-A or SCOP domains. Further, we show that all regions that do not match a Pfam-A or SCOP domain contain a significantly higher fraction of disordered structure. These unstructured regions may be contained within orphan domains or function as linkers between structured domains. Using several different definitions we have re-estimated the number of multi-domain proteins in different organisms and found that several methods all predict that eukaryotes have approximately 65% multi-domain proteins, while the prokaryotes consist of approximately 40% multi-domain proteins. However, these numbers are strongly dependent on the exact choice of cut-off for domains in unassigned regions. In conclusion, all eukaryotes have similar fractions of multi-domain proteins and disorder, whereas a high fraction of repeating domain is distinguished only in multicellular eukaryotes. This implies a role for repeats in cell-cell contacts while the other two features are important for intracellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号