首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D A Lewis  J J Villafranca 《Biochemistry》1989,28(21):8454-8459
The UTP-dependent ATPase reaction and the glutamine-dependent overall reaction of Escherichia coli CTP synthetase have been studied by rapid quench and isotope partitioning kinetics. The effect of GTP, an allosteric effector, on the pre-steady-state kinetics of both reactions has also been examined. The time courses of the UTP-dependent ATPase reaction in the presence and absence of GTP are both characterized by a burst of acid-labile phosphate equivalent to 0.93 and 0.43 subunits, respectively. The time course of the glutamine-dependent reaction in the absence of GTP is also characterized by a burst of acid-labile phosphate corresponding to 0.8 subunit; however, in the presence of GTP, no burst was observed. These results along with positional isotope exchange experiments [von der Saal, W., Anderson, P. M., & Villafranca, J. J. (1985) J. Biol. Chem. 260, 14997] provide evidence that the mechanism of CTP formation involves phosphorylation of UTP followed by attack of NH3, and finally release of phosphate, producing CTP, ADP, and Pi. A kinetic model for the first stages of the enzymatic reaction was developed from the rapid quench data, and the internal equilibrium constant for the formation of the phosphorylated UTP intermediate was determined. The internal equilibrium constants for the UTP-dependent reaction in the presence and absence of GTP were found to be 1.1 and 18, respectively. By contrast, the internal equilibrium constant for the reaction in the presence of glutamine was 50. Thus, the presence of glutamine shifts the internal equilibrium constant to favor formation of the phosphorylated UTP intermediate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The kinetic mechanism of Escherichia coli guanosine-5'-monophosphate synthetase has been determined by utilizing initial velocity kinetic patterns and positional isotope exchange experiments. The initial velocity patterns of MgATP, XMP, and either NH3 or glutamine (as nitrogen source) were consistent with the ordered addition of MgATP followed by XMP and then NH3. The enzyme catalyzes the exchange of 18O from the beta-nonbridge positions of [beta,beta,beta gamma,gamma,gamma,gamma-18O6]ATP into the alpha beta-bridge position only in the presence of XMP and Mg2+. The exchange reaction did not require NH3. The isotope exchange reaction increased as the XMP concentration increased and then decreased at saturating levels of XMP. These results also support the ordered addition of MgATP followed by XMP. GMP synthetase catalyzes the hydrolysis of ATP to AMP and PPi along with an ATP/PPi exchange reaction in the absence of NH3. These data taken together support a mechanism in which the initial step in the enzymatic reaction involves formation of an adenyl-XMP intermediate. Psicofuranine, an irreversible inhibitor of the enzyme, acts by preventing the release or further reaction of adenyl-XMP with H2O or NH3 but does not suppress the isotope exchange or ATP/PPi exchange reactions. GMP synthetase has also been shown to require a free divalent cation for full activity. When Ca2+ replaces Mg2+ in the reaction, the positional isotope exchange reaction is enhanced but the reaction with NH3 to form GMP is greatly suppressed.  相似文献   

3.
The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO3-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-18O]ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH4+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH4+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH4+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH4+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the 31P NMR spectra of the exchanged [gamma-18O]ATP, the distribution patterns of 16O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of [18O3, 16O]Pi does not readily participate. These results suggest that the formation of carbamate from MgATP, HCO3-, and glutamine proceeds via a stepwise, not concerted mechanism, involving at least one kinetically competent covalent intermediate, such as carboxyphosphate.  相似文献   

4.
The steady state kinetic mechanism, molecular isotope exchange and the positional isotope exchange (PIX) reactions of D-alanyl-D-alanine ligase from Salmonella typhimurium have been studied. The kinetic mechanism has been determined to be ordered Ter-Ter from initial velocity and product inhibition experiments. The first substrate to bind is ATP followed by the addition of 2 mol of D-alanine. Pi is released, and then D-alanyl-D-alanine and ADP dissociate from the enzyme surface. In the reverse direction D-alanyl-D-alanine exhibits complete substrate inhibition (Ki = 1.15 +/- 0.05 mM) by binding to the enzyme-ATP complex. In the presence of D-alanine, D-alanyl-D-alanine ligase catalyzed the positional exchange of the beta,gamma-bridge oxygen in [gamma-18O4]ATP to a beta-nonbridge position. Two possible alternate dead-end substrate analogs, D-2-chloropropionic acid and isobutyric acid, did not induce a positional isotope exchange in [gamma-18O4]ATP. The positional isotope exchange rate is diminished relative to the net substrate turnover as the concentration of D-alanine is increased. This is consistent with the ordered Ter-Ter mechanism as determined by the steady state kinetic experiments. The ratio of the positional isotope exchange rate relative to the net chemical turnover of substrate (Vex/Vchem) approaches a value of 1.4 as the concentration of D-alanine becomes very small. This ratio is 100 times larger than the ratio of the maximal reverse and forward chemical reaction velocities (V2/V1). This situation is only possible when the reaction mechanism proceeds in two distinct steps and the first step is much faster than the second step. The enzyme was also found to catalyze the molecular isotope exchange of radiolabeled D-alanine with D-alanyl-D-alanine in the presence of phosphate. These results are consistent with the formation of D-alanyl phosphate as a kinetically competent intermediate.  相似文献   

5.
On the intermediacy of carboxyphosphate in biotin-dependent carboxylations   总被引:1,自引:0,他引:1  
T Ogita  J R Knowles 《Biochemistry》1988,27(21):8028-8033
In the ATP-dependent carboxylation of biotin that is catalyzed by most biotin-dependent carboxylases, a fundamental mechanistic question is whether the ATP activates bicarbonate (via the formation of carboxyphosphate as an intermediate) or whether the ATP activates biotin (via the formation of O-phosphobiotin). We have resorted to three mechanistic tests using the biotin carboxylase subunit of acetyl-CoA carboxylase from Escherichia coli: positional isotope exchange, intermediate trapping, and 18O tracer experiments on the ATPase activity. First, no catalysis of positional isotope exchange in adenosine 5'-[( alpha, beta-18O, beta, beta-18O2]triphosphate) was observed when either biotin or bicarbonate was absent, nor was any exchange seen in the presence of both N-1-methylbiotin and bicarbonate. Second, the putative carboxyphosphate intermediate could not be trapped as its trimethyl ester, under conditions of incubation and analysis where the authentic triester was shown to be adequately stable. In the third test, however, we showed that the ATPase activity of biotin carboxylase that is seen in the absence of biotin, an activity that is known to parallel the normal carboxylase reaction when biotin is present, occurs with the transfer of an 18O label directly from [18O]bicarbonate into the product Pi. This result suggests that the bicarbonate-dependent biotin-independent ATPase reaction catalyzed by biotin carboxylase goes via carboxyphosphate and that the carboxylation of biotin itself may proceed analogously.  相似文献   

6.
The change in reaction energetics of the bicarbonate-dependent ATPase reaction of Escherichia coli carbamoyl phosphate synthetase has been investigated for two site-directed mutations of the essential cysteine in the small subunit. Cysteine 269 has been proposed to facilitate the hydrolysis of glutamine by the formation of a glutamyl-thioester intermediate. The two mutant enzymes, C269S and C269G, along with the isolated large subunit, exhibit a 2-2.6-fold increase in the bicarbonate-dependent ATPase reaction relative to that observed for the wild type enzyme. In the presence of glutamine the overall enhancement is 3.7 and 9.0 for the C269G and C269S mutant enzymes, respectively. Carboxyphosphate is an intermediate in the bicarbonate-dependent ATPase reaction. The cause of the rate enhancements was investigated by measuring the positional isotope exchange rate in [gamma-18O4] ATP relative to the net rate of ATP hydrolysis. This ratio (Vex/Vchem) is a measure of the partitioning of the enzyme-carboxyphosphate-ADP complex. The partitioning ratio for the mutants is identical within experimental error to that observed for the wild type enzyme. This observation is consistent with the conclusion that the ground state for the enzyme-carboxyphosphate-ADP complex in the mutants is destabilized relative to the same complex in the wild type enzyme. If the increase in the absolute rate of ATP hydrolysis was due to a stabilization of the transition state for carboxyphosphate hydrolysis then the positional isotope exchange rate relative to the chemical hydrolysis rate would have been expected to decrease in the mutants.  相似文献   

7.
I A Rose 《Federation proceedings》1978,37(14):2775-2782
Reversible gamma-PO3 transfer in ATP reactions can be recognized by exchange of 18O from the beta,gamma-bridge position to the beta-P-nonbridge positions: (see article). Such intramolecular exchange is less demanding for the detection of the bond cleavage than the usual ATP:ADP isotope exchange because it does not require dissociation of bound ADP from the intermediate complex. Acyl phosphate intermediates are indicated for the glutamine synthetase and carbamyl-P synthetase reactions by their extreme requirements for glutamate and bicarbonate, respectively, for positional oxygen exchange. No support is given for E-P or concerted mechanisms. No support is found for an active CO2 in the latter reaction, although this is not ruled out by the data. Positional isomerization in ATP occurs with lamellae from spinach chloroplast only in the light. When the ATP molecule interacts, it also undergoes complete exchange of the gamma-PO3 oxygen with water before it rejoins the pool of free ATP. The difference in rates of the two exchanges suggests that the torsional motion of ADP-beta-PO3 is greatly hindered on the enzyme. This may explain, by the argument of substrate activation, the rapid reversibility of the ATPase reaction on the enzyme.  相似文献   

8.
Transient kinetic data of the hydrolysis of several nucleotides (TTP, CTP, UTP, GTP) by cardiac myosin subfragment 1 (S1) were analyzed to obtain values for the equilibrium constant for nucleotide binding and rate constants for the S1-nucleotide isomerization and the subsequent nucleotide hydrolysis as well as the magnitudes of the relative fluorescence enhancements of the myosin that occur upon isomerization and hydrolysis. These data are compared with data from a previous study with ATP. Nucleotide binding is found to be relatively insensitive to nucleotide ring structure, being affected most by the group at position C6. Isomerization and hydrolysis are more sensitive to nucleotide structure, being inhibited by the presence of a bulky group at position C2. Kinetic parameters decrease as follows: for binding, GTP greater than UTP approximately TTP greater than ATP greater than CTP; for isomerization, ATP greater than UTP approximately TTP approximately CTP greater than GTP; for hydrolysis, ATP greater than TTP greater than CTP approximately UTP greater than GTP. Fluorescence enhancements appear to be most dependent upon the relative values of the individual rate constants.  相似文献   

9.
The synergistic effects of potential amino donors were studied in the assay of CTP synthetase in extracts of Chinese hamster fibroblasts. We found that L-glutamine was not effective as the sole amino donor, but combinations of L-glutamine with NH4HCO3, L-arginine or potassium phosphate did result in the conversion of UTP to CTP. L-arginine or potassium phosphate were also not effective when used alone, and NH4HCO3 was only slightly effective. Our studies demonstrate that the individual synergistic combinations were not additive; multiple combinations of components decreased rather than increased the formation of CTP. The synergistic combinations of L-glutamine with either NH4HCO3 or L-arginine had an absolute requirement for ATP; when ATP and PEP were absent no conversion of UTP to CTP occurred. The presence of GTP in a reaction mixture slightly increased the formation of CTP when L-glutamine and NH4HCO3 were used and substantially increased CTP formation when L-glutamine and L-arginine were used. De novo CTP synthesis was greatly reduced when nonradioactive CTP was added to an assay mixture, suggesting feedback inhibition. A TLC procedure has been developed that allows for the direct separation of UTP and CTP without requiring prior conversion to the mononucleotide or nucleoside level.  相似文献   

10.
Fast atom bombardment mass spectrometry (FAB-MS) has been used to measure positional isotope exchange rates in enzyme-catalyzed reactions. The technique has been applied to the reactions catalyzed by acetyl-CoA synthetase and argininosuccinate synthetase. The FAB technique is also able to quantitatively determine the oxygen-18 or oxygen-17 content of nucleotides on as little as 10 nmol of material with no prior derivatization. Acetyl-CoA synthetase has been shown by FAB-MS to catalyze the positional exchange of an oxygen-18 of ATP from the beta-nonbridge position to the alpha beta-bridge position in the presence of acetate. These results are consistent with acetyl adenylate as a reactive intermediate in this reaction. Argininosuccinate synthetase was shown not to catalyze a positional isotope exchange reaction designed to test for the formation of citrulline adenylate as a reactive intermediate. Argininosuccinate synthetase was also found not to catalyze the transfer of oxygen-18 from [ureido-18O]citrulline to the alpha-phosphorus of ATP in the absence of added aspartate. This experiment was designed to test for the transient formation of carbodiimide as a reactive intermediate. These results suggest that either argininosuccinate synthetase does not catalyze the formation of citrulline adenylate or the enzyme is able to completely suppress the rotation of the phosphoryl groups of PPi.  相似文献   

11.
Cytidine 5(')-triphosphate (CTP) synthase (EC 6.4.3.2) catalyzes the transfer of an amino group to the 4 position of uridine 5(')-triphosphate (UTP) to yield CTP. The reaction proceeds by activation of the base moiety of UTP by adenosine 5(')-triphosphate (ATP)-dependent phosphorylation. The activated intermediate reacts with NH(3) in the solution or is obtained by hydrolysis of glutamine. The Lactococcus lactis CTP synthase shows significant differences from the enzymes from Escherichia coli, yeast, and mammals. One is the apparent stability of the L. lactis CTP synthase tetramer in the absence of the nucleotides ATP and UTP. This condition causes the E. coli, yeast, and mammal enzymes to dissociate into dimers. However, the L. lactis CTP synthase shows substrate inhibition by NH(4)Cl that coincides with the range of NH(4)Cl concentrations that apparently dissociates tetrameric enzyme into dimers. Even though regular substrate inhibition was observed with NH(4)Cl when the ionic strength was held constant, a significant part of the inhibition could be shown to be due to the increase in ionic strength with increasing substrate concentration. Since the substrate inhibition by NH(4)Cl was relieved by increasing the equimolar ATP and UTP concentrations, it appeared that the substrate nucleotides stabilized the tetramer in a manner similar to that found in the absence of salt for other CTP synthases. In contrast to the suggested hydrophobic nature of the tetramer interactions in E. coli CTP synthase, the dissociation of the L. lactis CTP synthase tetramer in response to an increase in ionic strength suggests that the tetramer is stabilized by ionic interactions.  相似文献   

12.
J G Spencer  M J Wimmer 《Biochemistry》1985,24(15):3884-3890
The ATP-H2O back-exchange reaction catalyzed by membrane-bound chloroplast coupling factor 1 (CF1) in the light is known to be extensive; each reacting ATP molecule nearly equilibrates its gamma-PO3 oxygens with H2O before it dissociates from the enzyme. Pi, ASi, ADP, and GDP, alternate substrates of photophosphorylation, each inhibit the exchange reaction. At all concentrations of these substrate/inhibitor molecules tested, the high extent of exchange per molecule of ATP that reacts remains the same, while the number of ATP molecules experiencing exchange decreases. Thus, these inhibitors appear to act in a competitive-type manner, decreasing ATP turnover, as opposed to modulating the rate constants responsible for the partitioning of E X ATP during the exchange reaction. This is consistent with the identity of CF1 catalytic sites for ATP-H2O back-exchange and ATP synthesis. Carbonyl cyanide m-chlorophenylhydrazone and NH4Cl (uncouplers of photophosphorylation) and phloridzin (an energy-transfer inhibitor) also lower the rate of ATP-H2O back-exchange; they too are found to act by decreasing the turnover of the ATP pool, not the extent of exchange per reacting ATP molecule. The extent of ATP-H2O forward oxygen exchange, which occurs during net ATP synthesis prior to product dissociation, is unaffected by uncouplers, whether catalyzed by native CF1 (ATPase latent) or the dithiothreitol/light-activated ATPase form. The mode of NH4Cl inhibition of the ATP synthesis reaction, therefore, is not through a change in the partitioning of the E X ATP complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
CTP synthase catalyses the reaction: glutamine+UTP+ATP --> glutamate+CTP+ADP+P(i). The reaction is greatly stimulated by the allosteric binding of GTP. In addition to glutamine that is hydrolysed by the enzyme to ammonia and glutamate, CTP synthase will also utilise external sources of amino donors such as NH(4)Cl. This reaction is no longer dependent on allosteric activation by GTP. Hydroxylamine is also a substrate for Lactococcus lactis CTP synthase and results in the formation of N4-OH CTP. This product has the feature that it absorbs at 300nm where CTP absorption was shown to be greatly reduced and enabled the determination of N4-OH CTP formation in the presence of CTP synthesis derived from glutamine hydrolysis. Differences in initial rates determined for the hydroxylamine dependent reaction at 291nm in the presence and absence of glutamine and GTP were ascribed to simultaneous CTP and N4-OH CTP synthesis in the presence of these compounds. A characterisation of the apparent inhibition by GTP and glutamine of N4-OH CTP synthesis determined at 300nm showed that glutamine dependent CTP synthesis occurs at a rate of about 60% of that in the absence of hydroxylamine. GTP dependent inhibition of the ammonium chloride dependent reaction of L. lactis CTP synthase by the glutamine analog glutamate gamma-semialdehyde showed a partial inhibition with a maximum inhibition of about 60%. These results are interpreted in terms of a "half of the sites" mechanism for glutamine hydrolysis on CTP synthase.  相似文献   

14.
Methionyl-tRNA synthetase from Escherichia coli catalyses the activation of [18O2]methionine by adenosine 5'-[(R)-alpha 17O]triphosphate with inversion of configuration at P alpha. Furthermore methionyl-tRNA synthetase does not catalyse positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the absence of methionine or in the presence of the competitive inhibitor, methioninol, which eliminates the possibility of either adenylyl-enzyme or adenosine metaphosphate intermediates being involved. These observations require that methionyl-tRNA synthetase catalyses the activation of methionine by an associative 'in-line' nucleotidyl transfer mechanism. A kinetic study of positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the presence of methionine, Mg2+ and methionyl-tRNA synthetase showed that torsional equilibration (18O exchange into the P alpha--O--P beta bridge) occurs faster than tumbling (18O exchange into P gamma by rotation about the C2 axis of Mg[18O2]PPi), demonstratings that the positional isotope exchange occurs at least in part in the E X Met-AMP X Mg[18O2]PPi complex.  相似文献   

15.
ATP citrate lyase (ACL) catalyzes an ATP-dependent biosynthetic reaction which produces acetyl-coenzyme A and oxaloacetate from citrate and coenzyme A (CoA). Studies were performed with recombinant human ACL to ascertain the nature of the catalytic phosphorylation that initiates the ACL reaction and the identity of the active site residues involved. Inactivation of ACL by treatment with diethylpyrocarbonate suggested the catalytic role of an active site histidine (i.e., His760), which was proposed to form a phosphohistidine species during catalysis. The pH-dependence of the pre-steady-state phosphorylation of ACL with [γ-(33)P]-ATP revealed an ionizable group with a pK(a) value of ~7.5, which must be unprotonated for the catalytic phosphorylation of ACL to occur. Mutagenesis of His760 to an alanine results in inactivation of the biosynthetic reaction of ACL, in good agreement with the involvement of a catalytic histidine. The nature of the formation of the phospho-ACL was further investigated by positional isotope exchange using [γ-(18)O(4)]-ATP. The β,γ-bridge to nonbridge positional isotope exchange rate of [γ-(18)O(4)]-ATP achieved its maximal rate of 14 s(-1) in the absence of citrate and CoA. This rate decreased to 5 s(-1) when citrate was added, and was found to be 10 s(-1) when both citrate and CoA were present. The rapid positional isotope exchange rates indicated the presence of one or more catalytically relevant, highly reversible phosphorylated intermediates. Steady-state measurements in the absence of citrate and CoA showed that MgADP was produced by both wild type and H760A forms of ACL, with rates at three magnitudes lower than that of k(cat) for the full biosynthetic reaction. The ATPase activity of ACL, along with the small yet significant positional isotope exchange rate observed in H760A mutant ACL (~150 fold less than wild type), collectively suggested the presence of a second, albeit unproductive, phosphoryl transfer in ACL. Mathematical analysis and computational simulation suggested that the desorption of MgADP at a rate of ~7 s(-1) was the rate-limiting step in the biosynthesis of AcCoA and oxaloacetate.  相似文献   

16.
D D Clark  J J Villafranca 《Biochemistry》1985,24(19):5147-5152
Isotope-exchange enhancement studies, a variation on positional isotope-exchange enhancement as described by Raushel and Garrard [Raushel, F. M., & Garrard, L. J. (1984) Biochemistry 23, 1791-1795], are used to establish the point in the biosynthetic reaction of Escherichia coli glutamine synthetase at which gamma-glutamyl phosphate is formed. In these experiments, the behavior of the reverse biosynthetic reaction, i.e., the reaction of ADP, L-glutamine, and phosphate to form NH4+, L-glutamate, and ATP, is examined as a function of the concentration of ammonium ion. By varying the concentration of NH4+, the ratio of the velocity of isotope exchange to the velocity of net reaction, as measured by the rate of 18O depletion from labeled phosphate and the rate of production of L-glutamate, respectively, can be modulated in a mechanism-dependent manner. Evidence is presented demonstrating the presence of a branch point in the mechanism. The enzyme-ATP-glutamate complex may partition in two ways, one involving binding of ammonium ion and the other involving the chemical transformation to form the enzyme-ADP-gamma-glutamyl phosphate complex. The alternate pathways then rejoin upon formation of the enzyme-ADP-NH4+-gamma-glutamyl phosphate complex. Because of the branch point, there is no absolute requirement that ammonium ion be absent or present in order for the formation of gamma-glutamyl phosphate to occur. At high concentrations of ammonia, one pathway through the branch can be eliminated, effectively making that portion of the pathway ordered, with ATP, L-glutamate, and NH4+ binding consistent with our previously reported steady-state kinetic mechanism [Meek, T. D., & Villafranca, J. J. (1980) Biochemistry 19, 5513-5519].  相似文献   

17.
S P Harnett  G Lowe  G Tansley 《Biochemistry》1985,24(12):2908-2915
The activation of L-phenylalanine by yeast phenylalanyl-tRNA synthetase using adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate is shown to proceed with inversion of configuration at P alpha of ATP. This observation taken together with the lack of positional isotope exchange when adenosine 5'-[beta,beta-18O2]triphosphate is incubated with the enzyme in the absence of phenylalanine and in the presence of the competitive inhibitor phenylalaninol indicates that activation of phenylalanine occurs by a direct "in-line" adenylyl-transfer reaction. In the presence of Zn2+, yeast phenylalanyl-tRNA synthetase also catalyzes the phenylalanine-dependent hydrolysis of ATP to AMP and the synthesis of P1,P4-bis(5'-adenosyl) tetraphosphate (Ap4A). With adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate, the formation of AMP and Ap4A is shown to occur with inversion and retention of configuration, respectively. It is concluded that phenylalanyl adenylate is an intermediate in both processes, Zn2+ promoting AMP formation by hydrolytic cleavage of the C-O bond and Ap4A formation by displacement at phosphorus of phenylalanine by ATP.  相似文献   

18.
DNA topoisomerase II catalyzes the transport of one DNA duplex through a transient break in a second duplex using a complex ATP hydrolysis mechanism. Two key rates in the ATPase mechanism, ATP resynthesis and phosphate release, were investigated using 18O exchange and stopped-flow phosphate release experiments, respectively. The 18O exchange results showed that the rate of ATP resynthesis on the topoisomerase II active site was slow compared with the rate of phosphate release. When topoisomerase II was bound to DNA, phosphate was released slowly, with a lag. Since each of the preceding steps is known to occur rapidly, phosphate release is apparently a rate-determining step. The length of the lag phase was unaffected by etoposide, indicating that inhibiting DNA religation inhibits the ATPase reaction cycle at some step following phosphate release. By combining the 18O exchange and phosphate release results, the rate constant for ATP resynthesis can be calculated as approximately 0.5 s(-1). These data support the mechanism of sequential hydrolysis of two ATP by DNA topoisomerase II.  相似文献   

19.
1. The bound nucleotides of the beef-heart mitochondrial ATPase (F1) are lost during cold inactivation followed by (NH4)2SO4 precipitation. The release of tightly bound ATP parallels the loss of ATPase activity during this process. 2. During cold inactivation, the sedimentation coefficient (s20, w) of the ATPase first declines from 12.1 S to 9 S, then to 3.5 S. (NH4)2SO4 precipitation of the 9-S component also leads to dissociation into subunits with s20, w of 3.5 S. 3. The 9-S component still contains the bound nucleotides, which are removed when it dissociated into smaller subunits. 4. Reactivation of cold-inactivated ATPase by incubation at 30 degrees C is increased by the presence of 25% glycerol. ATP, however, does not have any clearcut effect on the degree of reactivation in the presence of glycerol. 5. ADP is an inhibitor of the reactivation, probably because it exchanges during reactivation for bound ATP giving rise to an inactive 12-S component. 6. The exchange of tightly bound nucleotides with added adenine nucleotides is more extensive and faster with cold-inactivated ATPase than with the native enzyme. During reactivation up to 1.6 moles of ATP and 1.0 mole ADP can exchange per mole enzyme. 7. Incubation with GTP, CTP or inorganic pyrophosphate induces an increased activity of the ATPase, which, however, soon declines in the presence of ATP. It also disappears on precipitation of GTP-treated enzyme with (NH4)2SO4.  相似文献   

20.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号