首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Calcitonin gene-related peptide (CGRP) is an intrapancreatic neuropeptide with potential effects on islet hormone secretion. To investigate its pancreatic actions, we examined the effects of a 10 min perfusion of synthetic human CGRP on islet hormone release from the isolated dog pancreas (n = 6) at 5.5 mM glucose. At 0.1 nM, CGRP inhibited insulin secretion (P less than 0.01), which was already observed at 2 min after its introduction. After CGRP perfusion was stopped, a stimulatory off-response occurred. In contrast, at higher dose levels, CGRP stimulated insulin secretion. At 1.0 nM, the stimulation was weak and transient (P less than 0.01), occurring only during the first 3 min of CGRP perfusion. At 10 nM, the stimulation continued for 6 min (P less than 0.05), and at 50 nM, the stimulation was marked and sustained throughout the 10 min perfusion period (P less than 0.01). After the CGRP perfusion at 1.0 and 10 nM, but not at 50 nM, a marked stimulatory off-response in insulin secretion was seen. Glucagon and somatostatin secretion were not significantly affected by CGRP at any of the examined concentrations. We conclude that CGRP exerts dual effects on insulin secretion from the perfused dog pancreas: inhibition at low concentrations and stimulation at high concentrations. This pattern of effect might represent a new regulatory concept for neural influences on islet function: the qualitative response being determined by the amount of neurotransmitter released.  相似文献   

2.
Secretion of the gut hormone glucagon-like peptide-1 (GLP-1) is stimulated by meal ingestion. The response is rapid, suggesting a stimulatory pathway elicited from the upper gastrointestinal area. In pigs, we have been unable to demonstrate a neural stimulatory pathway, but GLP-1 secretion is regulated by local somatostatin secretion. In search for an endocrine pathway, we studied the effect of a range of concentrations of cholecystokinin octapeptide (26-33) (CCK 8), gastric inhibitory peptide 1-42 (GIP), secretin, motilin, calcitonin gene-related peptide (CGRP), and the modified amino acid, 5-hydroxytryptamine (serotonin, 5-HT) on GLP-1 and somatostatin release from isolated perfused segments of porcine ileum.GLP-1 secretion was stimulated by 1 nM CCK 8 and 10 nM GIP, but suppressed by 1 nM motilin and 1 microM 5-HT. Secretin and CGRP had no effect. Somatostatin secretion was stimulated by CCK 8 at 1 and 10 nM, by GIP at 1 and 10 nM and by 10 nM CGRP. Secretin, 5-HT and motilin had no effect on somatostatin secretion.We conclude that CCK 8 and GIP 1-42 stimulated GLP-1 secretion, but only in concentrations greatly exceeding normal postprandial concentrations. Thus, we find it unlikely that endocrine agents from the duodenum regulate GLP-1 secretion in pigs.  相似文献   

3.
4.
The effect of parasympathetic and sympathetic nerve stimulation on the secretion of gastric somatostatin and gastrin has been studied in an isolated perfused rat stomach preparation. Stimulation of the vagus nerve inhibited somatostatin secretion and increased gastrin release. Splanchnic nerve stimulation increased somatostatin release during simultaneous atropine perfusion, but not in its absence, whereas gastrin secretion was unchanged. The secretory activity of the gastric D-cell was therefore reciprocally influenced by the sympathetic and parasympathetic nerves but sympathetic stimulation was only effective during muscarinic blockade.  相似文献   

5.
S Akiyama  H Kawasaki  A Shimogai  Y Kurosaki 《Peptides》2001,22(11):1887-1893
We have reported that the rat mesenteric resistance artery has innervation of calcitonin gene-related peptide (CGRP)-containing vasodilator nerves (CGRPergic nerves). We also demonstrated that adrenomedullin (AM) causes mesenteric vasodilation through activation of CGRP receptors. The present study was designed to examine the effect of AM on neurotransmission of CGRPergic nerves in rat mesenteric arteries. In preconstricted preparations without endothelium, periarterial nerve stimulation (PNS, 1 and 2 Hz) induced a frequency-dependent vasodilation. A bolus injection of CGRP (10 pmol) into the perfusate also caused a vasodilation. AM (0.1 to 10 nM) concentration-dependently caused 40% to 60% inhibition of the PNS-induced vasodilation, but AM did not attenuate vasodilation induced by exogenous CGRP injection. The inhibitory effect of AM (10 nM) on PNS-induced vasodilation was further potentiated by CGRP [8-37] (CGRP receptor antagonist, 50 nM), which attenuated the vasodilator response to the CGRP injection. Combined perfusion of AM [22-52] (AM receptor antagonist, 10 to 100 nM) resulted in further inhibition of PNS-induced neurogenic vasodilation without affecting the vasodilator response to the CGRP injection. CGRP [8-37] but not AM [22-52] antagonized vasodilation induced by AM perfusion. These findings suggest that AM presynaptically inhibits neurotransmission of CGRPergic nerves, probably decreasing CGRP release, via receptors different from CGRP receptors.  相似文献   

6.
A role for the enkephalins in the regulation of gastric somatostatin (SLI) secretion has been investigated in an isolated perfused rat stomach model. Both methionine- and leucine-enkephalins caused a dose-dependent inhibition of gastric inhibitory polypeptide (GIP) stimulated SLI secretion. Leu-enkephalin was one order of magnitude less potent than met-enkephalin: 50% inhibition by met-enkephalin was at 4 X 10(-9) M and with leu-enkephalin 3.5 X 10(-8) M. Naloxone (100 nM) had no effect on basal secretion but blocked the inhibitory action of met-enkephalin (1 nM or 1 microM). Vagal stimulation (7 V, 10 Hz, 5 ms) inhibited GIP-stimulated SLI release. Administration of naloxone partially reversed this inhibition, suggesting that endogenous opioids were at least partially responsible for vagally induced inhibition. A number of possible pathways by which endogenous enkephalins may modulate SLI release have been proposed.  相似文献   

7.
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide that is present in peripheral cells of islets and in nerves around and within islets. CGRP can inhibit insulin secretion in vitro and in vivo. Whether the inhibitory action of CGRP is mediated by somatostatin or by nerve terminals is, however, not known. The objective of this study was to examine the effect of CGRP on insulin secretion, using cultured newborn and adult rat islet cells which did not contain nerve terminals. In adult rat islet cells, CGRP (10(-10) to 10(-8) M) significantly inhibited glucose-stimulated and gastric inhibitory polypeptide (GIP)-potentiated insulin secretion, but in newborn rat islet cells, CGRP did not inhibit glucose-stimulated insulin secretion. Inhibition of glucose-stimulated and GIP-potentiated insulin release was dependent on the glucose concentration during the prestimulation period. CGRP did not stimulate release of somatostatin. These findings suggest that rat CGRP can act directly on beta-cells through a specific receptor that is absent in newborn rat beta-cells.  相似文献   

8.
Calcitonin gene-related peptide (CGRP) exerts a positive contractile response directly in rat ventricular cardiomyocytes. This response is mediated by receptors of the CGRP1-subtype. Amylin is 46% homologous with CGRP and binds to receptors selective for CGRP in a range of tissues. The ability of amylin to influence ventricular contractility has been assessed using cardiomyocytes isolated from the ventricles of adult rats. Cardiomyocytes were subjected to biphasic electrical stimulation at 0.5 Hz. CGRP produced a concentration-dependent positive contractile response which became maximal 4 min after initial stimulation. CGRP increased the contractile amplitude maximally at 1 nM and to a value which was 23.3% greater than in the absence of peptide (EC50 VALUE = 21 pM). Amylin increased the contractile amplitude maximally at 20 nM and to a value which was 17.3% greater than in the absence of peptide (EC50 VALUE = 216 pM). In the presence of amylin (20 nM), the concentration-dependence of the contractile response to CGRP was shifted to the left, so that the response became maximal when CGRP was present at 50 pM. In the presence of CGRP8–37 (100 nM), a selective antagonist at CGRP1-preferring receptors, the concentration-dependence of the contractile response to CGRP was shifted to the right (dose RATIO = 54). Similarly, in the presence of CGRP8–37 (100 nM), the contractile response to amylin was inhibited significantly (P ≤ 0.01). Amylin8–37 (100 nM) did not inhibit the concentration-dependence of the contractile responses to CGRP and amylin significantly (dose RATIOS = 4.2 and 2.4, respectively). In conclusion, these data indicate that amylin exerts a contractile response directly in rat ventricular cardiomyocytes via CGRP1-preferring receptors. This effect could assume greater significance in non-insulin-dependent diabetes mellitus and in hypertensive states, in which the concentration of amylin is elevated in plasma.  相似文献   

9.
Atrial natriuretic peptide (ANP) as well as its receptor, NPR-A, have been identified in gastric antral mucosa, suggesting that ANP may act in a paracrine fashion to regulate gastric secretion. In the present study, we have superfused antral mucosal segments obtained from rat stomach to examine the paracrine pathways linking ANP and somatostatin secretion in this region.ANP (0.1 pM to 0.1 microM) caused a concentration-dependent increase in somatostatin secretion (EC(50), 0.3 nM). The somatostatin response to ANP was unaffected by the axonal blocker tetrodotoxin but abolished by addition of the selective NPR-A antagonist, anantin. Anantin alone inhibited somatostatin secretion by 18+/-3% (P<0.005), implying that endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion. Somatostatin (1 pM to 1 microM) caused a concentration-dependent decrease in ANP secretion (EC(50), 0.7 nM) that was abolished by addition of the somatostatin subtype 2 receptor (sst2) antagonist, PRL2903. Neutralization of ambient somatostatin with somatostatin antibody (final dilution 1:200) increased basal ANP secretion by 70+/-8% (P<001), implying that endogenous somatostatin inhibits ANP secretion. We conclude that antral ANP and somatostatin secretion are linked by paracrine feedback pathways: endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion, and endogenous somatostatin, acting via the sst2 receptor, inhibits ANP secretion.  相似文献   

10.
Calcitonin gene-related peptide (CGRP) is a 37 amino acid peptide recently demonstrated to be a peptide expressed by the calcitonin gene in the rat central nervous system. Intracerebroventricular administration of CGRP in pylorus ligated rats resulted in a dose dependent suppression of gastric acid secretion. This effect was also present in acutely vagotomized rats. In addition, CGRP inhibited the stimulation of gastric acid secretion by thyrotropin releasing hormone. CGRP was considerably less potent in its effect on gastric acid than calcitonin, a well known central inhibitor of gastric acid secretion in the rat. This study suggests that CGRP may be a factor in the central regulation of gastric acid secretion in the rat.  相似文献   

11.
We have investigated the effect of exendin-4, a GLP-1 analogue, on somatostatin and insulin secretion in perfused rat pancreas. At constant glucose concentration within the type 2 diabetic range (9 mM), exendin-4 stimulated somatostatin and insulin secretion in a dose-dependent manner. Dose-response curves were sigmoidal (R (2) = 0.9954 and R (2) = 0.9973, respectively; p < 0.01) and the EC (50) was 4.3 nM for somatostatin secretion and 1.4 nM for insulin secretion. Exendin-4 stimulated somatostatin output at low (3.2 mM), normal (5.5 mM) and high (9 mM) glucose concentrations, while the insulinotropic effect of exendin-4 was not found at low glucose levels. On the other hand, exendin-4 potentiated somatostatin and insulin responses to an increase in perfusate glucose levels, and to arginine and carbachol. Finally, the insulinotropic effect of exendin-4 was maintained in the absence of a somatostatin response as induced by cysteamine pretreatment, indicating a direct effect of exendin-4 on the B-cell. In summary, exendin-4 behaves as a general stimulatory agent of both insulin and somatostatin release in the perfused rat pancreas. Given that exendin-4 has also been shown to increase gastric somatostatin secretion, it is tempting to speculate that exendin-4 might behave as a general stimulator of D-cell function in other tissues, a point worthy of further investigation.  相似文献   

12.
Responses to rat (r) adrenomedullin (ADM) and human (h) ADM were compared in the hindlimb vascular bed of the cat under conditions of controlled blood flow. Intra-arterial injections of rADM and hADM in doses of 0.03–1 nmol caused dose-related decreases in hindlimb perfusion pressure. In terms of relative vasodilator activity, rADM was similar to hADM. The time course of the vasodilator response and the recovery half times (T1/2) for the vasodilator response to rADM and hADM were not significantly different. Decreases in hindlimb perfusion pressure in response to rADM and hADM were not altered by the calcitonin gene-related peptide receptor antagonist, rCGRP(8–37), at the same time, vasodilator responses to calcitonin gene-related peptide (CGRP) were significantly reduced. The T1/2 of the vasodilator response to rADM and hADM were significantly greater after administration of the cAMP-selective, type IV phosphodiesterase inhibitor, rolipram. These data demonstrate that decreases in hindlimb perfusion pressure in response to rADM and hADM are similar and that vasodilator responses to rADM are not dependent on the activation of CGRP receptors in the hindlimb vascular bed of the cat. These data further suggest that decreases in hindlimb perfusion pressure in response to rADM are mediated by smooth muscle increases in cAMP levels.  相似文献   

13.
The modulatory effects of vasodilatory peptides on noradrenaline release from sympathetic nerve terminals have been studied in the rat portal vein model. Transmural field stimulation of the longitudinally mounted vein preparation evoked concomitant increases in the [3H]noradrenaline overflow and the integrated tension. Both responses were abolished by guanethidine or tetrodotoxin, whereas only the tension response was blocked by phentolamine. CGRP and VIP, both being present in intramural nerve fibers in the rat portal vein, were compared with atriopeptin II for modulatory effects. CGRP (100 nM) had no effect on the overflow of [3H]noradrenaline or the integrated tension response to transmural stimulation. VIP (30 nM) and atriopeptin II (30 nM) both caused significant reductions of both [3H]noradrenaline overflow and the integrated tension. These results indicate that the decreased tension response to transmural stimulation in the presence of VIP or AP II reflects the sum of both pre- and postsynaptic inhibitions.  相似文献   

14.
Immunoreactive calcitonin gene-related peptide (CGRP) has been shown to occur in intrapancreatic nerves and islet somatostatin cells in the rat. Therefore, we investigated the effects of CGRP on insulin and glucagon secretion in the rat. CGRP was infused i.v. at one of 3 dose levels (4.3, 17 or 68 pmol/min). Infusion of CGRP alone was found to elevate basal plasma levels of both insulin and glucagon. In contrast, CGRP impaired the plasma insulin responses to both glucose (7 mg/min; P less than 0.001) and arginine (8.5 mg/min; P less than 0.001), and inhibited the arginine-induced increase in plasma glucagon concentrations (P less than 0.001). Since CGRP and somatostatin are colocalized within the D-cells, we also infused CGRP and somatostatin together at equimolar dose levels (17 pmol/min), with glucose (7 mg/min). By that, the increase in plasma insulin concentrations decreased more rapidly than during infusion of either peptide alone. Since alpha 2-adrenoceptor activation is known to inhibit glucose-stimulated insulin secretion, we also infused CGRP together with the specific alpha 2-adrenoceptor antagonist yohimbine (37 nmol/min). In that way, the plasma insulin-lowering effect of CGRP was prevented. We have shown in the rat: (1) that CGRP stimulates basal insulin and glucagon secretion; (2) that CGRP inhibits stimulated insulin and glucagon secretion; (3) that CGRP and somatostatin more rapidly induce a potent inhibitory action on glucose-stimulated insulin secretion when given together; and (4) that the alpha 2-adrenoceptor antagonist, yohimbine, counteracts the inhibitory action of CGRP on glucose-stimulated insulin secretion. We suggest that CGRP is of importance for the regulation of insulin and glucagon secretion in the rat. The mechanisms behind the islet effects of CGRP can not be established by the present results, though they apparently require intact alpha 2-adrenoceptors.  相似文献   

15.
Calcitonin gene-related peptide (CGRP) has previously been shown to coexist with acetylcholine in spinal cord motoneurons and to stimulate adenylate cyclase in skeletal muscle cells. We now demonstrate that in cultured chick myotubes whose phosphoinositides have been labeled with [3H]inositol, CGRP enhanced the accumulation of [3H]inositol mono-, bis-, and trisphosphates. Rat CGRP-I (rCGRP) (0.1 microM) elicited a transient increase in [3H]inositol 1,4,5-trisphosphate, as well as a more sustained elevation of [3H]inositol 1,3,4-trisphosphate levels. In the presence of Li+, rCGRP evoked an approximately 3-fold increase of [3H]inositol monophosphate levels, which persisted for up to 1 h. This effect of rCGRP was concentration-dependent, the half-maximal response being obtained at 1 nM. Since rCGRP also accelerated the rate of synthesis of [3H]inositol-containing lipids, it appears that the peptide acts by stimulating phosphoinositide turnover in chick myotubes. Agents that either mimic or elevate intracellular cyclic AMP also enhanced the synthesis of [3H]inositol-containing lipids, and the accumulation of inositol phosphates, suggesting that the effects of rCGRP are mediated, at least in part, via the activation of adenylate cyclase. This hypothesis was strengthened by the non-additivity of the inositol phosphate responses elicited by rCGRP and other cAMP-mobilizing agents, and by the sensitivity of these responses to various pharmacological treatments. The present results provide an example of positive interaction between cAMP and the phosphoinositide signaling system. They further suggest that a coexisting neuropeptide may exert pleiotropic actions upon its target cell by stimulating multiple signal transduction pathways.  相似文献   

16.
《FEBS letters》1994,340(3):226-230
The effects of synthetic rat adrenomedullin (rAM), a novel vasorelaxant peptide originally isolated from human pheochromocytoma, on receptor binding and cAMP generation were studied in cultured rat vascular smooth muscle cells (VSMC). A binding study using [125I]rAM revealed the presence of a single class of high-affinity (Kd1.3 × 10−8 M) binding sites for rAM in VSMC. The apparent Ki of rat calcitonin gene-related peptide (rCGRP) was 3 × 10−7 M. Affinity labeling of VSMC membranes with [125I]rAM revealed two distinct labeled bands with apparent molecular weights of 120 and 70 kDa, both of which were abolished by excess unlabeled rAM or rCGRP. rAM stimulated cAMP formation with an approximate EC50 of 10−8 M, the effect of which was additive with isoproterenol, but not with rCGRP. The rAM-induced cAMP response was unaffected by propranalol, indomethacin, or quinaerine, but inhibited by a CGRP receptor antagonist, human CGRP[8–37]. These data suggest that VSMC possesses specific AM receptors functionally coupled to adenylate cyclase with which CGRP interacts.  相似文献   

17.
The interaction between somatostatin and activin A was studied in terms of FSH secretion in rat pituitary cells in primary culture. Incubation of pituitary cells with 1 nM activin A for 48 hrs resulted in an increase in FSH release into incubation medium. The effect of activin A was dependent on cell-density and the higher the density, the smaller the stimulatory action of activin A. Somatostatin, by itself, did not affect the FSH secretion. When 100 nM somatostatin was included together with activin A or the cells were pretreated with somatostatin for 2 hrs, the activin A-induced FSH secretion was enhanced. This potentiation effect of somatostatin was inversely dependent on the cell-density. These results indicate that somatostatin enhances, rather than inhibits, the activin A action in pituitary cells.  相似文献   

18.
Somatostatin and gastrin release into the gastric lumen in rats   总被引:1,自引:0,他引:1  
Somatostatin and gastrin release into the gastric lumen was investigated in anaesthetized, vagally intact rats. The stomach was perfused at a flow rate of 0.5 mL.min-1. During perfusion with 0.1 M HCl or buffers of varying pH the somatostatin ans gastrin concentrations in the perfusate were less than 10 pg.mL -1 and approximately 30 pg.mL-1, respectively. Peptone caused a gastrin concentrations in the perfusate were less than 10 pg.mL-1 and approximately 30 pg.mL-1, respectively. Peptone caused a slight pH-independent increase in somatostatin release; gastrin release was unchanged despite an increase in serum gastrin from a basal of 15 +/- 4 to 155 +/- 34 pg.mL-1 during peptone stimulation. intravenous infusion of carbachol (1 microgram.kg-1.min-1) strongly stimulated luminal somatostatin and gastrin release (from 5 +/- 1 to 192 +/- 52 pg.mL-1 and from 27 +/- 5 to 198 +/- 41 pg.mL-1, respectively) during perfusion with 0.1 M HCl. Phosphate buffer perfusion at pH 7.5 abolished the cholinergic-mediated somatostatin release but the gastrin response was unaffected. It is suggested that changes of luminal hormone concentrations in the rat stomach do not reflect the secretory activity of the endocrine cells in the gastric mucosa.  相似文献   

19.
Afferent neuron-mediated gastric mucosal protection has been suggested to result from the local release of vasodilator peptides such as calcitonin gene-related peptide (CGRP) from afferent nerve endings within the stomach. The present study, therefore, examined whether rat alpha-CGRP, administered via different routes, is able to protect against mucosal injury induced by gastric perfusion with 25% ethanol or acidified aspirin (25 mM, pH 1.5) in urethane-anesthetized rats. Close arterial infusion of CGRP (15 pmol/min) to the stomach, via a catheter placed in the abdominal aorta proximal to the celiac artery, significantly reduced gross mucosal damage caused by ethanol and aspirin whereas mean arterial blood pressure (BP) was not altered. Intravenous infusion of CGRP (50 pmol/min) did not affect aspirin-induced mucosal injury but significantly enhanced ethanol-induced lesion formation. Intravenous CGRP (50 pmol/min) also lowered BP and increased the gastric clearance of [14C]aminopyrine, an indirect measure of gastric mucosal blood flow while basal gastric output of acid and bicarbonate was not altered. Intragastric administration of CGRP (260 nM) significantly inhibited aspirin-induced mucosal damage but did not influence damage in response to ethanol. BP, gastric clearance of [14C]aminopyrine, and gastric output of acid and bicarbonate remained unaltered by intragastric CGRP. These data indicate that only close arterial administration of CGRP to the rat stomach, at doses devoid of a systemic hypotensive effect, is able to protect against both ethanol- and aspirin-induced mucosal damage. As this route of administration closely resembles local release of the peptide in the stomach, CGRP may be considered as a candidate mediator of afferent nerve-induced gastric mucosal protection.  相似文献   

20.
Our previous report showed gastric mucosal surface pH was determined by alkali secretion at intragastric luminal pH 3 but by acid secretion at intragastric pH 5. Here, we question whether regulation of mucosal surface pH is due to the effect of luminal pH on net acid/base secretions of the whole stomach. Anesthetized rats with a gastric cannula were used, the stomach lumen was perfused with weakly buffered saline, and gastric secretion was detected in the gastric effluent with 1) a flow-through pH electrode and 2) a fluorescent pH-sensitive dye (Cl-NERF). During pH 5 luminal perfusion, both pH sensors reported the gastric effluent was acidic (pH 4.79). After perfusion was stopped transiently (stop-flow), net acid accumulation was observed in the effluent when perfusion was restarted (peak change to pH 4.1-4.3). During pH 3 luminal perfusion, both pH sensors reported gastric effluent was close to perfusate pH (3.0-3.1), but net alkali accumulation was detected at both pH sensors after stop-flow (peak pH 3.3). Buffering capacity of gastric effluents was used to calculate net acid/alkaline secretions. Omeprazole blocked acid secretion during pH 5 perfusion and amplified net alkali secretion during pH 3 perfusion. Pentagastrin elicited net acid secretion under both luminal pH conditions, an effect antagonized by somatostatin. We conclude that in the basal condition, the rat stomach was acid secretory at luminal pH 5 but alkaline secretory at luminal pH 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号