首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Reinvestigation of the inhibition of actin polymerization by profilin   总被引:11,自引:0,他引:11  
In buffer containing 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 5 mM imidazole, pH 7.5, 0.1 mM CaCl2, 0.2 mM dithiothreitol, 0.01% NaN3, and 0.2 mM ATP, the KD for the formation of the 1:1 complex between Acanthamoeba actin and Acanthamoeba profilin was about 5 microM. When the actin was modified by addition of a pyrenyl group to cysteine 374, the KD increased to about 40 microM but the critical concentration (0.16 microM) was unchanged. The very much lower affinity of profilin for modified actin explains the anomalous critical concentrations curves obtained for 5-10% pyrenyl-labeled actin in the presence of profilin and the apparently weak inhibition by profilin of the rate of filament elongation when polymerization is quantified by the increase in fluorescence of pyrenyl-labeled actin. Light-scattering assays of the polymerization of unmodified actin in the absence and presence of profilin gave a similar value for the KD (about 5-10 microM) when determined by the increase in the apparent critical concentration of F-actin at steady state at all concentrations of actin up to 20 microM and by the inhibition of the initial rates of polymerization of actin nucleated by either F-actin or covalently cross-linked actin dimer. In the same buffer, but with ADP instead of ATP, the critical concentration of actin was higher (4.9 microM) and the KD of the profilin-actin complex was lower for both unmodified (1-2 microM) and 100% pyrenyl-labeled actin (4.9 microM).  相似文献   

2.
Acanthamoeba profilin strongly inhibits in a concentration-dependent fashion the rate and extent of Acanthamoeba actin polymerization in 50 mM KCl. The lag phase is prolonged indicating reduction in the rate of nucleus formation. The elongation rates at both the barbed and pointed ends of growing filaments are inhibited. At steady state, profilin increases the critical concentration for polymerization but has no effect on the reduced viscosity above the critical concentration. Addition of profilin to polymerized actin causes it to depolymerize until a new steady-state, dependent on profilin concentration, is achieved. These effects of profilin can be explained by the formation of a 1:1 complex with actin with a dissociation constant of 1 to 4 microM. MgCl2 strongly inhibits these effects of profilin, most likely by binding to the high-affinity divalent cation site on the actin. Acanthamoeba profilin has similar but weaker effects on muscle actin, requiring 5 to 10 times more profilin than with amoeba actin.  相似文献   

3.
《The Journal of cell biology》1984,98(6):1919-1925
Physarum profilin reduces the rates of nucleation and elongation of F- actin and also reduces the extent of polymerization of actin at the steady state in a concentration-dependent fashion. The apparent critical concentration for polymerization of actin is increased by the addition of profilin. These results can be explained by the idea that Physarum profilin forms a 1:1 complex with G-actin and decreases the concentration of actin available for polymerization. The dissociation constant for binding of profilin to G-actin is estimated from the kinetics of polymerization of G-actin and elongation of F-actin nuclei and from the increase of apparent critical concentration in the presence of profilin. The dissociation constants for binding of Physarum profilin to Physarum and muscle actins under physiological ionic conditions are in the ranges of 1.4-3.7 microM and 11.3-28.5 microM, respectively. When profilin is added to an F-actin solution, profilin binds to G-actin which co-exists with F-actin, and then G- actin is dissociated from F-actin to compensate for the decrease of the concentration of free G-actin and to keep it constant at the critical concentration. At the steady state, free G-actin of the critical concentration is in equilibrium not only with F-actin but also with profilin-G-actin complex. The stoichiometry of 1:1 for the formation of complex between profilin and G-actin is directly shown by means of chemical cross-linking.  相似文献   

4.
Actobindin is a new actin-binding protein isolated from Acanthamoeba castellanii. It is composed of two possibly identical polypeptide chains of approximately 13,000 daltons, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and with isoelectric points of 5.9. In the native state, actobindin appears to be a dimer of about 25,000 daltons by sedimentation equilibrium analysis. It contains no tryptophan and probably no tyrosine. Actobindin reduces the concentration of F-actin at steady state and inhibits the rate of filament elongation to extents consistent with the formation of a 1:1 actobindin-G-actin complex in a reaction with a KD of about 5 microM. The available data do not eliminate the possibility of other stoichiometries for the complex, but they are not consistent with any significant interaction between actobindin and F-actin. Despite the similarities between the effects of actobindin and Acanthamoeba profilin on the polymerization of Acanthamoeba actin, the two proteins are quite distinct with different native and subunit molecular weights, different isoelectric points, and different amino acid compositions. Also, unlike profilin, actobindin binds as well to rabbit skeletal muscle G-actin and to pyrenyl-labeled G-actin as it does to unmodified Acanthamoeba G-actin.  相似文献   

5.
We have investigated the effects of profilin on nucleotide binding to actin and on steady state actin polymerization. The rate constants for the dissociation of ATP and ADP from monomeric Mg-actin at physiological conditions are 0.003 and 0.009 s-1, respectively. Profilin increases these dissociation rate constants to 0.08 s-1 for MgATP-actin and 1.4 s-1 for MgADP-actin. Thus, profilin can increase the rate of exchange of actin-bound ADP for ATP by 140-fold. The affinity of profilin for monomeric actin is found to be similar for MgATP-actin and MgADP-actin. Continuous sonication was used to allow study of solutions having sustained high filament end concentrations. During sonication at steady state, F-actin depolymerizes toward the critical concentration of ADP-actin [Pantaloni, D., et al. (1984)J. Biol. Chem. 259, 6274-6283], our analysis indicates that under these conditions a significant number of filaments contain terminal ADP-actin subunits. Addition of profilin to this system increases the polymer concentration and increases the steady state ATPase activity during sonication. These data are explained by the fast exchange of ATP for ADP on the profilin-ADP-actin complex, resulting in rapid ATP-actin regeneration. An important function of profilin may be to provide the growing ends of filaments with ATP-actin during periods when the monomer cycling rate exceeds the intrinsic nucleotide exchange rate of monomeric actin.  相似文献   

6.
The mechanism of profilin-promoted actin polymerization has been systematically reinvestigated. Rates of barbed-end elongation onto Spectrin.4.1.Actin seeds were measured by right angle light scattering to avoid confounding effects of pyrenyl-actin, and KINSIM was used to analyze elongation progress curves. Without thymosin-beta4, both actin and Profilin.Actin (P.A) are competent in barbed-end polymerization, and kinetic simulations yielded the same bimolecular rate constant ( approximately 10 x 10(6) M(-1) s(-1)) for actin monomer or Profilin.Actin. When measured in the absence of profilin, actin assembly curves over a 0.7-4 microM thymosin-beta4 concentration range fit a simple monomer sequestering model (1 microM K(D) for Thymosin-beta4.Actin). The corresponding constant for thymosin-beta4.pyrenyl-Actin, however, was significantly higher ( approximately 9-10 microM), suggesting that the fluorophore markedly weakens binding to thymosin-beta4. With solutions of actin (2 microM) and thymosin-beta4 (2 or 4 microM), the barbed-end assembly rate rose with increasing profilin concentration (0.7-2 microM). Actin assembly in presence of thymosin-beta4 and profilin fit a simple thermodynamic energy cycle, thereby disproving an earlier claim (D. Pantaloni and M.-F. Carlier (1993) Cell 75, 1007-1014) that profilin promotes nonequilibrium filament assembly by accelerating hydrolysis of filament-bound ATP. Our findings indicate that profilin serves as a polymerization catalyst that captures actin monomers from Thymosin-beta4.Actin and ushers actin as a Profilin.Actin complex onto growing barbed filament ends.  相似文献   

7.
Inhibition of an early stage of actin polymerization by actobindin   总被引:3,自引:0,他引:3  
Actobindin, a 25,000-dalton dimeric protein purified from Acanthamoeba castellanii was previously shown to form a 1:1 molar complex with both Acanthamoeba and rabbit muscle G-actin with KD values of about 5 and 7 microM, respectively, and not to interact with F-actin (Lambooy, P. K., and Korn, E. D. (1986) J. Biol. Chem. 261, 17150-17155). We now find that actobindin is a much more potent inhibitor of the early phases of polymerization of both Acanthamoeba and muscle G-actin than can be accounted for by its binding to G-actin. Actobindin inhibits the polymerization of both G-ATP-actin and G-ADP-actin, and has little, if any, effect on the rate of ATP hydrolysis that accompanies polymerization of G-ATP-actin. The kinetics of actin polymerization in the presence of actobindin are qualitatively consistent with the postulation that actobindin binds reversibly to and inhibits the elongation of an intermediate between G-actin and F-actin, perhaps a small oligomer(s) or a species in equilibrium with such an intermediate. This hypothesis implies the, at least transient, existence of an actin species with properties different from those of monomers and filaments. Actobindin may, then, provide a useful experimental tool for investigating the still relatively obscure early steps in actin polymerization. Irrespective of its mechanism of action, actobindin might serve in situ to reduce the rate of actin polymerization de novo while having relatively little effect on the rates of elongation of existing filaments or from actobindin-resistant nucleating sites.  相似文献   

8.
We purified profilin from rabbit alveolar macrophages and documented its structural and functional similarity to profilins isolated from other cells. The KD for formation of the macrophage profilin-actin complex was 3.0 +/- 0.8 microM (mean +/- S.D.). The affinity of this protein for actin did not change significantly in the presence of various concentrations of KCl and MgCl2, profilin-actin complex concentration being strictly dependent on the critical actin monomer concentration and free profilin concentration. We also examined profilin's interactions with actin in the presence of acumentin, a macrophage protein which inhibits actin monomer exchange at the "pointed" ends of actin filaments. Low concentrations of this protein caused substantial decreases in estimated profilin-actin complex concentration. The macrophage gelsolincalcium ion complex which blocks exchange at the "barbed" end of actin filaments, when added to profilin and actin solutions in substoichiometric concentrations, caused large increases in estimated profilin-actin complex concentration. The changes in calculated profilin-actin complex concentration induced by these two actin-modulating proteins were too large to be explained solely by their effects on critical actin monomer concentration.  相似文献   

9.
Actophorin is an abundant 15-kD actinbinding protein from Acanthamoeba that is thought to form a nonpolymerizable complex with actin monomers and also to reduce the viscosity of polymerized actin by severing filaments (Cooper et al., 1986. J. Biol. Chem. 261:477-485). Homologous proteins have been identified in sea urchin, chicken, and mammalian tissues. Chemical crosslinking produces a 1:1 covalent complex of actin and actophorin. Actophorin and profilin compete for crosslinking to actin monomers. The influence of actophorin on the steady-state actin polymer concentration gave a Kd of 0.2 microM for the complex of actophorin with actin monomers. Several new lines of evidence, including assays for actin filament ends by elongation rate and depolymerization rate, show that actophorin severs actin filaments both at steady state and during spontaneous polymerization. This is confirmed by direct observation in the light microscope and by showing that the effects of actophorin on the low shear viscosity of polymerized actin cannot be explained by monomer sequestration. The severing activity of actophorin is strongly inhibited by stoichiometric concentrations of phalloidin or millimolar concentrations of inorganic phosphate.  相似文献   

10.
11.
The free actin concentration at steady state, Ac, is a variable that determines how actin regulatory proteins influence the extent of actin polymerization. We describe a novel method employing fluorescence anisotropy to directly measure Ac in any sample after the addition of a trace amount of labeled thymosin beta4 or thymosin beta4 peptide. Using this assay, we confirm earlier theoretical work on the helical polymerization of actin and confirm the effects of actin filament-stabilizing drugs and capping proteins on Ac, thereby validating the assay. We also confirm a controversial prior observation that profilin lowers the critical concentration of Mg2+-actin. A general mechanism is proposed to explain this effect, and the first quantitative dose-response curve for the effect of profilin on Ac facilitates its evaluation. This mechanism also predicts the effect of profilin on critical concentration in the presence of the limited amount of capping protein, which is the condition often found in cells, and the effect of profilin on critical concentration in cell extracts is demonstrated for the first time. Additionally, nonlinear effects of thymosin beta4 on the steady state amount of F-actin are explained by the observed changes in Ac. This assay has potential in vivo applications that complement those demonstrated in vitro.  相似文献   

12.
T D Pollard  J A Cooper 《Biochemistry》1984,23(26):6631-6641
The current view of the mechanism of action of Acanthamoeba profilin is that it binds to actin monomers, forming a complex that cannot polymerize [Tobacman, L. S., & Korn, E. D. (1982) J. Biol. Chem. 257, 4166-4170; Tseng, P., & Pollard, T. D. (1982) J. Cell Biol. 94, 213-218; Tobacman, L. S., Brenner, S. L., & Korn, E. D. (1983) J. Biol. Chem. 258, 8806-8812]. This simple model fails to predict two new experimental observations made with Acanthamoeba actin in 50 mM KC1, 1 mM MgCl2, and 1 mM EGTA. First, Acanthamoeba profilin inhibits elongation of actin filaments far more at the pointed end than at the barbed end. According, to the simple model, the Kd for the profilin-actin complex is less than 5 microM on the basis of observations at the pointed end and greater than 50 microM for the barbed end. Second, profilin inhibits nucleation more strongly than elongation. According to the simple model, the Kd for the profilin-actin complex is 60-140 microM on the basis of two assays of elongation but 2-10 microM on the basis of polymerization kinetics that reflect nucleation. These new findings can be explained by a new and more complex model for the mechanism of action that is related to a proposal of Tilney and co-workers [Tilney, L. G., Bonder, E. M., Coluccio, L. M., & Mooseker, M. S. (1983) J. Cell Biol. 97, 113-124]. In this model, profilin can bind both to actin monomers with a Kd of about 5 microM and to the barbed end of actin filaments with a Kd of about 50-100 microM. An actin monomer bound to profilin cannot participate in nucleation or add to the pointed end of an actin filament. It can add to the barbed end of a filament. When profilin is bound to the barbed end of a filament, actin monomers cannot bind to that end, but the terminal actin protomer can dissociate at the usual rate. This model includes two different Kd's--one for profilin bound to actin monomers and one for profilin bound to an actin molecule at the barbed end of a filament. The affinity for the end of the filament is lower by a factor of 10 than the affinity for the monomer, presumably due to the difference in the conformation of the two forms of actin or to steric constraints at the end of the filament.  相似文献   

13.
We have used a fluorescence assay to measure the binding of Acanthamoeba profilin to monomeric Acanthamoeba and rabbit skeletal muscle actin labeled on cysteine-374 with pyrene iodoacetamide. The wavelengths of the pyrene excitation and emission maxima are constant at 346 and 386 nm, but the fluorescence is enhanced up to 50% by profilin. The higher fluorescence is largely due to higher absorbance in the presence of profilin. The fluorescence enhancement has a hyperbolic dependence on the concentration of profilin, suggesting a single class of binding sites. Linear Scatchard plots yield an estimate of the dissociation constant, Kd, of the complex of profilin with pyrenyl-actin. In low-ionic-strength buffers with 2 to 6 mM imidazole (pH 7.0) and 0.1 mM CaCl2 the Kd is 9 microM for both muscle and Acanthamoeba actin. In 50 mM KCl the Kd for the complex with Acanthamoeba actin is 16 microM, while the Kd for the complex with muscle actin is greater than 50 microM.  相似文献   

14.
We have quantitated the in vitro interactions of profilin and the profilin-actin complex (PA) with the actin filament barbed end using profilin and nonmuscle beta,gamma-actin prepared from bovine spleen. Actin filament barbed end elongation was initiated from spectrin seeds in the presence of varying profilin concentrations and followed by light scattering. We find that profilin inhibits actin polymerization and that this effect is much more pronounced for beta,gamma-actin than for alpha-skeletal muscle actin. Profilin binds to beta,gamma-actin filament barbed ends with an equilibrium constant of 20 microM, decreases the filament elongation rate by blocking addition of actin monomers, and increases the dissociation rate of actin monomers from the filament end. PA containing bound MgADP supports elongation of the actin filament barbed end, indicating that ATP hydrolysis is not necessary for PA elongation of filaments. Initial analysis of the energetics for these reactions suggested an apparent greater negative free energy change for actin filament elongation from PA than elongation from monomeric actin. However, we calculate that the free energy changes for the two elongation pathways are equal if the profilin-induced weakening of nucleotide binding to actin is taken into consideration.  相似文献   

15.
Profilin II dimers bind the (GP5)3 peptide derived from VASP with an affinity of approximately 0.5 microM. The resulting profilin II-peptide complex overcomes the combined capacity of thymosin beta4 and profilin II to inhibit actin nucleation and restores the extent of filament formation. We do not observe such an effect when barbed filament ends are capped. Neither can profilin I, in the presence of the peptide, promote actin polymerization during its early phase consistent with a lower affinity. Since a Pro17 peptide-profilin II complex only partially restores actin polymerization, the glycine residues in the VASP peptide appear important.  相似文献   

16.
The formation of actin oligomers studied by analytical ultracentrifugation   总被引:2,自引:0,他引:2  
The small oligomers formed from Mg-G-actin under favorable conditions were studied by sedimentation velocity ultracentrifugation. The critical concentration of actin at pH 7.8 in the presence of 100 microM MgCl2 and 200 microM ATP was 12.5 +/- 2.8 microM. Under these conditions, about 15% of 7.5 microM Mg-actin was converted to oligomers of subunit size four to eight in 5 h at 20 degrees C. In 100 microM MgCl2 and no free ATP, the critical concentration was about 6.5 microM, and about 22% of 7.5 microM Mg-actin was converted to dimers in 80 min. There were no detectable higher oligomers or F-actin present in either case. As determined by the analysis of ATP hydrolysis, most, if not all, of the oligomer subunits contained ATP. When 28.5 microM actin was polymerized to steady state in 100 microM MgCl2 and 200 microM ATP, about 50% of the actin was present as F-actin, consistent with the critical concentration (approximately 12.5 microM), about 50% as oligomers as large as seven subunits, and only about 5% as monomers. When solutions containing oligomers were diluted the oligomers dissociated. Alternatively, when the MgCl2 concentration was raised to 1 mM, the solutions containing oligomers polymerized more rapidly than monomeric Mg-G-actin and to the same final steady state. These data are entirely consistent with the condensation-elongation model for helical polymerization proposed by Oosawa and Kasai (Oosawa, F., and Kasai, M. (1962) J. Mol. Biol. 4, 10-21) according to which, under certain conditions, substantial amounts of short linear and helical oligomers should be formed below the critical concentration and linear oligomers should coexist with monomers and F-actin at steady state.  相似文献   

17.
To explain the effect of profilin on actin critical concentration in a manner consistent with thermodynamic constraints and available experimental data, we built a thermodynamically rigorous model of actin steady-state dynamics in the presence of profilin. We analyzed previously published mechanisms theoretically and experimentally and, based on our analysis, suggest a new explanation for the effect of profilin. It is based on a general principle of indirect energy coupling. The fluctuation-based process of exchange diffusion indirectly couples the energy of ATP hydrolysis to actin polymerization. Profilin modulates this coupling, producing two basic effects. The first is based on the acceleration of exchange diffusion by profilin, which indicates, paradoxically, that a faster rate of actin depolymerization promotes net polymerization. The second is an affinity-based mechanism similar to the one suggested in 1993 by Pantaloni and Carlier although based on indirect rather than direct energy coupling. In the model by Pantaloni and Carlier, transformation of chemical energy of ATP hydrolysis into polymerization energy is regulated by direct association of each step in the hydrolysis reaction with a corresponding step in polymerization. Thus, hydrolysis becomes a time-limiting step in actin polymerization. In contrast, indirect coupling allows ATP hydrolysis to lag behind actin polymerization, consistent with experimental results.  相似文献   

18.
F-actin at steady state in the presence of ATP partially depolymerized to a new steady state upon mechanical fragmentation. The increase in critical concentration with the number concentration of filaments has been quantitatively studied. The data can be explained by a model in which the preferred pathway for actin association-dissociation reactions at steady state in the presence of ATP involves binding of G-actin . ATP to filaments, ATP hydrolysis, and dissociation of G-actin . ADP which is then slowly converted to G-actin . ATP. As a consequence of the slow exchange of nucleotide on G-actin, the respective amounts of G-actin . ATP and G-actin . ADP coexisting with F-actin at steady state depend on the filament number concentration. G-actin coexisting with F-actin at zero number concentration of filaments would then consist of G-actin . ATP only, while the critical concentration obtained at infinite number of filaments would be that for G-actin . ADP. Values of 0.35 and 8 microM, respectively, were found for these two extreme critical concentrations for skeletal muscle actin at 20 degrees C, pH 7.8, 0.1 mM CaCl2, 1 mM MgCl2, and 0.2 mM ATP. The same value of 8 microM was directly measured for the critical concentration of G-actin . ADP polymerized in the presence of ADP and absence of ATP, and it was unaffected by fragmentation. These results have important implications for experiments in which critical concentrations are compared under conditions that change the filament number concentrations.  相似文献   

19.
Profilin interacts with the barbed ends of actin filaments and is thought to facilitate in vivo actin polymerization. This conclusion is based primarily on in vitro kinetic experiments using relatively low concentrations of profilin (1-5 microm). However, the cell contains actin regulatory proteins with multiple profilin binding sites that potentially can attract millimolar concentrations of profilin to areas requiring rapid actin filament turnover. We have studied the effects of higher concentrations of profilin (10-100 microm) on actin monomer kinetics at the barbed end. Prior work indicated that profilin might augment actin filament depolymerization in this range of profilin concentration. At barbed-end saturating concentrations (final concentration, approximately 40 microm), profilin accelerated the off-rate of actin monomers by a factor of four to six. Comparable concentrations of latrunculin had no detectable effect on the depolymerization rate, indicating that profilin-mediated acceleration was independent of monomer sequestration. Furthermore, we have found that high concentrations of profilin can successfully compete with CapG for the barbed end and uncap actin filaments, and a simple equilibrium model of competitive binding could explain these effects. In contrast, neither gelsolin nor CapZ could be dissociated from actin filaments under the same conditions. These differences in the ability of profilin to dissociate capping proteins may explain earlier in vivo data showing selective depolymerization of actin filaments after microinjection of profilin. The finding that profilin can uncap actin filaments was not previously appreciated, and this newly discovered function may have important implications for filament elongation as well as depolymerization.  相似文献   

20.
Mechanism of the interaction of human platelet profilin with actin   总被引:24,自引:4,他引:20  
We have reexamined the interaction of purified platelet profilin with actin and present evidence that simple sequestration of actin monomers in a 1:1 complex with profilin cannot explain many of the effects of profilin on actin assembly. Three different methods to assess binding of profilin to actin show that the complex with platelet actin has a dissociation constant in the range of 1 to 5 microM. The value for muscle actin is similar. When bound to actin, profilin increases the rate constant for dissociation of ATP from actin by 1,000-fold and also increases the rate of dissociation of Ca2+ bound to actin. Kinetic simulation showed that the profilin exchanges between actin monomers on a subsecond time scale that allows it to catalyze nucleotide exchange. On the other hand, polymerization assays give disparate results that are inconsistent with the binding assays and each other: profilin has different effects on elongation at the two ends of actin filaments; profilin inhibits the elongation of platelet actin much more strongly than muscle actin; and simple formation of 1:1 complexes of actin with profilin cannot account for the strong inhibition of spontaneous polymerization. We suggest that the in vitro effects on actin polymerization may be explained by a complex mechanism that includes weak capping of filament ends and catalytic poisoning of nucleation. Although platelets contain only 1 profilin for every 5-10 actin molecules, these complex reactions may allow substoichiometric profilin to have an important influence on actin assembly. We also confirm the observation of I. Lassing and U. Lindberg (1985. Nature [Lond.] 318:472-474) that polyphosphoinositides inhibit the effects of profilin on actin polymerization, so lipid metabolism must also be taken into account when considering the functions of profilin in a cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号