首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is frequently measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent, 2,4-dinitrophenylhydrazine. We developed an immunochemical dot blot method for quantitation of protein carbonylation in homogenates or purified proteins. Dimethyl sulfoxide was employed as the solvent because it very efficiently extracts proteins from tissues and keeps them soluble. It also readily dissolves 2,4-dinitrophenylhydrazine and wets polyvinylidene difluoride (PVDF) membranes. The detection limit is 0.19 ± 0.04 pmol of carbonyl, and 60 ng of protein is sufficient to measure protein carbonyl content. This level of sensitivity allowed measurement of protein carbonylation in individual Drosophila.  相似文献   

2.
Leaf senescence is characterised by a massive degradation of proteins in order to recycle nitrogen to other parts of the plant, such as younger leaves or developing grain/seed. Protein degradation during leaf senescence is a highly regulated process and it is suggested that proteins to be degraded are marked by an oxidative modification (carbonylation) that makes them more susceptible to proteolysis. However, there is as yet no evidence of an increase in protein carbonylation level during natural leaf senescence. The aim of our study was thus to monitor protein carbonylation level during the process of natural senescence in the flag leaf of field‐grown winter wheat plants. For this purpose, we adapted a fluorescence‐based method using fluorescein‐5‐thiosemicarbazide (FTC) as a probe for detecting protein carbonyl derivatives. As used for the first time on plant material, this method allowed the detection of both quantitative and qualitative modifications in protein carbonyl levels during the last stages of wheat flag leaf development. The method described herein represents a convenient, sensitive and reproducible alternative to the commonly used 2,4‐dinitrophenylhydrazine (DNPH)‐based method. In addition, our analysis revealed changes in protein carbonylation level during leaf development that were associated with qualitative changes in protein abundance and carbonylation profiles. In the senescing flag leaf, protein carbonylation increased concomitantly with a stimulation of endoproteolytic activity and a decrease in protein content, which supports the suggested relationship between protein oxidation and proteolysis during natural leaf senescence.  相似文献   

3.
The purpose of this study was to determine (1) whether oxidative damage to plasma proteins in mice and rats, accrued during aging and manifested as carbonyl modifications, was selective or random, and (2) whether the putative carbonylated proteins could be used as markers of oxidative stress and aging. The total protein carbonyl content of the plasma significantly increased with age in mice but not in rats. Immunostaining of mouse plasma proteins, resolved by SDS-PAGE to localize carbonyls, revealed that only two specific proteins exhibited an age-associated increase in carbonylation. These proteins with molecular weights of 68 and 75 kDa, were identified as albumin and transferrin, respectively. In the rat, albumin and a 167-kDa protein, alpha1-macroglobulin (alpha-1M), showed significant age-dependent accrual of carbonylation. In the plasma of middle age Rhesus monkeys, in addition to albumin, a 54-kDa protein showed carbonylation. However, neither transferrin nor alpha-1M were carbonylated in the plasma of Rhesus monkey. Albumin was the only protein that showed carbonylation in all the three species examined. Results of this study indicate that age-associated increase in protein carbonylation is a selective and not a random phenomenon. However, the set of proteins that become carbonylated differs in different species.  相似文献   

4.
Oxidative stress is an important factor in causing aging and age-related diseases. It is caused by an imbalance between oxidants such as reactive oxygen species (ROS) and antioxidants. Protein oxidation elicited by free radicals may cause protein function disruptions. Protein carbonylation, an irreversible process resulting in loss of function of the modified proteins, is a widely used marker for oxidative stress. In the present study, we have evaluated the levels of protein carbonyls, ROS, and catalase in the cerebral hemispheres of young and aged mice. When aged mice were subjected to a dietary restriction (DR) regimen (alternate days feeding) of 3 months, a significant reduction in the endogenous levels of protein carbonylation as well as ROS and elevation of catalase was observed in their cerebral hemispheres. The present study, thus, demonstrated the antioxidative effects of late-onset DR regimen in the cerebral hemispheres of aged mice which may act as a powerful modulator of age-related neurodegenerative diseases.  相似文献   

5.
Oxidative modifications of enzymes and structural proteins play a significant role in the aetiology and/or progression of several human diseases. Protein carbonyl content is the most general and well-used biomarker of severe oxidative protein damage. Human diseases associated with protein carbonylation include Alzheimer's disease, chronic lung disease, chronic renal failure, diabetes and sepsis. Rapid recent progress in the identification of carbonylated proteins should provide new diagnostic (possibly pre-symptomatic) biomarkers for oxidative damage, and yield basic information to aid the establishment an efficacious antioxidant therapy.  相似文献   

6.
7.
Cataract is generally associated with the breakdown of the lens microarchitecture. Age-dependent chemical modifications and cross-linking of proteins are the major pathways for development of lens opacity. The specific alterations in lens proteins caused by glycation with four carbonyl metabolites, fructose, methylglyoxal, glyoxal, and ascorbic acid, were investigated. Decrease in intensity of tryptophan related fluorescence and level of reduced protein sulfhydryl groups, parameters that are indicative for changes in protein conformation, were observed after reaction with all studied carbonyl compounds. Protein carbonyl content, an index for oxidative damage to proteins, was strongly enhanced in methylglyoxal-treated proteins. Cross-linking of glycated proteins was confirmed by polyacrylamide electrophoresis. alpha-Oxoaldehydes were the most reactive in protein aggregation. They also formed specific chromophores absorbing UV light above 300 nm. Significant loss in lactate dehydrogenase activity resulted from incubation with methylglyoxal, followed by glyoxal and ascorbic acid. The results obtained showed that alterations in lens proteins do not follow the specific reactivity of studied carbonyl compounds. Despite the similarity in chemical structures of alpha-oxoaldehydes and ascorbic acid degradation products, they cause specific alterations in lens protein structure with different biological consequences.  相似文献   

8.
Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to form high-molecular-weight aggregates that are resistant to degradation and accumulate as damaged or unfolded proteins. Such aggregates of carbonylated proteins can inhibit proteasome activity. Alarge number of neurodegenerative diseases are directly associated with the accumulation of proteolysis-resistant aggregates of carbonylated proteins in tissues. Identification of specific carbonylated protein(s) functionally impaired and development of selective carbonyl blockers should lead to the definitive assessment of the causative, correlative or consequential role of protein carbonylation in disease onset and/or progression, possibly providing new therapeutic approaches.  相似文献   

9.
The imbalance between the reactive oxygen (ROS) and nitrogen (RNS) species production and their handling by the antioxidant machinery (low molecular weight antioxidant molecules and antioxidant enzymes), also known as oxidative stress, is a condition caused by physiological and pathological processes. Moreover, oxidative stress may be due to an overproduction of free radicals during physical exercise. Excess of radical species leads to the modification of molecules, such as proteins – the most susceptible to oxidative modification – lipids and DNA. With regard to the oxidation of proteins, carbonylation is an oxidative modification that has been widely described. Several studies have detected changes in the total amount of protein carbonyls following different types of physical exercise, but only few of these identified the specific amino acidic residues targets of such oxidation. In this respect, proteomic approaches allow to identify the proteins susceptible to carbonylation and in many cases, it is also possible to identify the specific protein carbonylation sites. This review focuses on the role of protein oxidation, and specifically carbonyl formation, for plasma and skeletal muscle proteins, following different types of physical exercise performed at different intensities. Furthermore, we focused on the proteomic strategies used to identify the specific protein targets of carbonylation. Overall, our analysis suggests that regular physical activity promotes a protection against protein carbonylation, due to the activation of the antioxidant defence or of the turnover of protein carbonyls. However, we can conclude that from the comprehensive bibliography analysed, there is no clearly defined specific physiological role about this post-translational modification of proteins.  相似文献   

10.
Protein carbonylation is a well-documented and quantifiable consequence of oxidative stress in several neuropathologies, including multiple sclerosis, Alzheimer׳s disease, and Parkinson׳s disease. Although oxidative stress is a hallmark of traumatic brain injury (TBI), little work has explored the specific neural regions and cell types in which protein carbonylation occurs. Furthermore, the effect of gender on protein carbonylation after TBI has not been studied. The present investigation was designed to determine the regional and cell specificity of TBI-induced protein carbonylation and how this response to injury is affected by gender. Immunohistochemistry was used to visualize protein carbonylation in the brains of adult male and female Sprague–Dawley rats subjected to controlled cortical impact (CCI) as an injury model of TBI. Cell-specific markers were used to colocalize the presence of carbonylated proteins in specific cell types, including astrocytes, neurons, microglia, and oligodendrocytes. Results also indicated that the injury lesion site, ventral portion of the dorsal third ventricle, and ventricular lining above the median eminence showed dramatic increases in protein carbonylation after injury. Specifically, astrocytes and limited regions of ependymal cells adjacent to the dorsal third ventricle and the median eminence were most susceptible to postinjury protein carbonylation. However, these patterns of differential susceptibility to protein carbonylation were gender dependent, with males showing significantly greater protein carbonylation at sites distant from the lesion. Proteomic analyses were also conducted and determined that the proteins most affected by carbonylation in response to TBI include glial fibrillary acidic protein, dihydropyrimidase-related protein 2, fructose-bisphosphate aldolase C, and fructose-bisphosphate aldolase A. Many other proteins, however, were not carbonylated by CCI. These findings indicate that there is both regional and protein specificity in protein carbonylation after TBI. The marked increase in carbonylation seen in ependymal layers distant from the lesion suggests a mechanism involving the transmission of a cerebral spinal fluid-borne factor to these sites. Furthermore, this process is affected by gender, suggesting that hormonal mechanisms may serve a protective role against oxidative stress.  相似文献   

11.
Protein carbonyl detection has been commonly used to analyze the degree of damage to proteins under oxidative stress conditions. Most laboratories rely on derivatization of carbonyl groups with dinitrophenylhydrazine followed by Western blot analysis using antibodies against the dinitrophenyl moiety. This paper describes a protein carbonyl detection method based on fluorescent Bodipy, Cy3 and Cy5 hydrazides. Using this approach, Western blot and immunodetection are no longer needed, shortening the procedure and increasing accuracy. Combination of Cy3 and Cy5 hydrazides allows multiplexing analyses in a single two-dimensional gel. Derivatization with Bodipy hydrazide allows easy matching of the spots of interest and those obtained by general fluorescent protein staining methods, which facilitates excising target proteins from the gels and identifying them. This method is effective for detecting protein carbonylation in samples of proteins submitted to metal-catalyzed oxidation "in vitro" and assessing the effect of hydrogen peroxide and chronological aging on protein oxidative damage in yeast cells.  相似文献   

12.
While exposure of C3 plants to elevated [CO2] would be expected to reduce production of reactive oxygen species (ROS) in leaves because of reduced photorespiratory metabolism, results obtained in the present study suggest that exposure of plants to elevated [CO2] can result in increased oxidative stress. First, in Arabidopsis and soybean, leaf protein carbonylation, a marker of oxidative stress, was often increased when plants were exposed to elevated [CO2]. In soybean, increased carbonyl content was often associated with loss of leaf chlorophyll and reduced enhancement of leaf photosynthetic rate (Pn) by elevated [CO2]. Second, two-dimensional (2-DE) difference gel electrophoresis (DIGE) analysis of proteins extracted from leaves of soybean plants grown at elevated [CO2] or [O3] revealed that both treatments altered the abundance of a similar subset of proteins, consistent with the idea that both conditions may involve an oxidative stress. The 2-DE analysis of leaf proteins was facilitated by a novel and simple procedure to remove ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from soluble soybean leaf extracts. Collectively, these findings add a new dimension to our understanding of global change biology and raise the possibility that oxidative signals can be an unexpected component of plant response to elevated [CO2].  相似文献   

13.
Reactive carbonyl species (RCS) generated by lipid peroxidation, leading to protein carbonylation, are involved in several human diseases. Protein carbonylation constitutes one of the best characterised biomarker of oxidative damage to proteins. Albumin and actin have been identified, through different proteomic approaches, as the main protein targets for RCS in plasma and tissues, respectively. By a combined LC-MS/MS and computational approach, we have demonstrated their high reactivity towards alpha,beta-unsaturated aldehydes, and established the stoichiometry of reaction with HNE and acrolein, as well as the amino acid residues more susceptible to carbonyl attack. A new mass spectrometric approach, based on LC-MS/MS analysis of tag HNE/ACR-modified peptides of carbonylated albumin and actin is proposed, and the advantages over the conventional methods for RCS and RCS-adducted protein analyses discussed.  相似文献   

14.
Grip strength, an indicator of muscle strength, has been shown to be a predictor of poor outcomes among older adults. Protein carbonylation, an indicator of oxidative damage to proteins, leads to cellular dysfunction and a decline in tissue function. Oxidative stress has been implicated in the pathogenesis of sarcopenia. The objective was to determine whether serum protein carbonyl concentrations are associated with grip strength in older women living in the community. A cross-sectional study was conducted in 672 women, aged 65 and older, from the Women's Health and Aging Study (WHAS) I, the one-third most disabled women residing in the community in Baltimore, MD. Protein carbonyl and grip strength were measured in each patient. In a multivariate analysis adjusting for age, race, body mass index, and Mini-Mental Status Examination score, protein carbonyls (nmol/mg) were associated with grip strength (beta = -6.77, P < 0.01). The statistical association was unchanged after the analysis adjusted for hypertension, congestive heart failure, and depression. Ordered logistic regression models adjusted for the above factors showed that protein carbonyls are associated with increased odds of being in the lower quartiles of grip strength (odds ratio 8.74, 95% confidence interval 1.06-71.89, P = 0.043). These results suggest oxidative protein damage is independently associated with low grip strength among older women living in the community. Increased oxidative stress may be contributing to loss of muscle strength in older adults.  相似文献   

15.
In maize leaves growth at low temperatures causes decreases in maximum catalytic activities of photosynthetic enzymes and reduced amounts of proteins, rather than effects on regulation or co-ordination of the photosynthetic processes. To test the hypothesis that differential localization of antioxidants between the different types of photosynthetic cell in maize leaves is a major determinant of the extreme sensitivity of maize leaves to chilling damage, oxidative damage to proteins, induced by incubation of maize leaves with paraquat, has been measured and compared with the effects incurred by growth at low temperatures. While the increase in protein carbonyl groups caused by paraquat treatment was much greater than that caused by low temperature growth conditions, most carbonyl groups were detected on bundle sheath proteins in both stress conditions. With one or two exceptions proteins located in the mesophyll tissues were free of protein carbonyl groups in both situations. Paraquat treatment caused a complete loss of the psaA gene products, modified the photosystem II reaction centre polypeptide, D1, and increased the number of peptides arising from breakdown of ribulose 1,5-bisphosphate carboxylase oxygenase (Rubisco). In contrast, growth at 15 degrees C increased the abundance (but not number) of Rubisco breakdown products and decreased that of the psaB gene product while the psaA gene product and PEP carboxylase were largely unaffected. Since bundle sheath proteins are more susceptible to oxidative damage than those located in the mesophyll cells, strategies for achieving a more balanced system of antioxidant defence may be effective in improving chilling tolerance in maize.  相似文献   

16.
Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents.  相似文献   

17.
Increased adipose protein carbonylation in human obesity   总被引:1,自引:0,他引:1  
Insulin resistance is associated with obesity but mechanisms controlling this relationship in humans are not fully understood. Studies in animal models suggest a linkage between adipose reactive oxygen species (ROS) and insulin resistance. ROS oxidize cellular lipids to produce a variety of lipid hydroperoxides that in turn generate reactive lipid aldehydes that covalently modify cellular proteins in a process termed carbonylation. Mammalian cells defend against reactive lipid aldehydes and protein carbonylation by glutathionylation using glutathione-S-transferase A4 (GSTA4) or carbonyl reduction/oxidation via reductases and/or dehydrogenases. Insulin resistance in mice is linked to ROS production and increased level of protein carbonylation, mitochondrial dysfunction, decreased insulin-stimulated glucose transport, and altered adipokine secretion. To assess protein carbonylation and insulin resistance in humans, eight healthy participants underwent subcutaneous fat biopsy from the periumbilical region for protein analysis and frequently sampled intravenous glucose tolerance testing to measure insulin sensitivity. Soluble proteins from adipose tissue were analyzed using two-dimensional gel electrophoresis and the major carbonylated proteins identified as the adipocyte and epithelial fatty acid-binding proteins. The level of protein carbonylation was directly correlated with adiposity and serum free fatty acids (FFAs). These results suggest that in human obesity oxidative stress is linked to protein carbonylation and such events may contribute to the development of insulin resistance.  相似文献   

18.
Regular physical activity is associated with a reduced risk of coronary heart disease, as it probably modifies the balance between free-radical generation and antioxidant activity. On the other hand, however, acute physical activity increases oxygen uptake and leads to a temporary imbalance between the production of reactive oxygen and nitrogen species (RONS) and their disposal: this phenomenon is called oxidative stress. Proteins are one of the most important oxidation targets during physical exercise and carbonylation is one of the most common oxidative protein modifications. In cells there is a physiological level of oxidized proteins that doesn't interfere with cell function; however, an increase in oxidized protein levels may cause a series of cellular malfunctions that could lead to a disease state. For this reason the quantification of protein oxidation is important to distinguish a healthy state from a disease state. Several studies have demonstrated an increase of carbonylated plasma proteins in athletes after exercise, but none have identified targets of this oxidation. Recently a process of protein decarbonylation has been discovered, this may indicate that carbonylation could be involved in signal transduction. The aim of our research was to characterize plasma protein carbonylation in response to physical exercise in trained male endurance athletes. We analyzed by proteomic approach their plasma proteins at resting condition and after two different kinds of physical exercise (PE). We used 2D-GE followed by western blot with specific antibodies against carbonylated proteins. The 2D analysis identified Haptoglobin as potential protein target of carbonylation after PE. We also identified Serotransferrin and Fibrinogen whose carbonylation is reduced after exercise. These methods have allowed us to obtain an overview of plasma protein oxidation after physical exercise.  相似文献   

19.
Protein carbonylation is a major form of protein oxidation and is widely used as an indicator of oxidative stress. Carbonyl groups do not have distinguishing UV or visible, spectrophotometric absorbance/fluorescence characteristics and thus their detection and quantification can only be achieved using specific chemical probes. In this paper, we review the advantages and disadvantages of several chemical probes that have been and are still being used for protein carbonyl analysis. These probes include 2,4-dinitrophenylhydazine (DNPH), tritiated sodium borohydride ([3H]NaBH4), biotin-containing probes, and fluorescence probes. As our discussions lean toward gel-based approaches, utilizations of these probes in 2D gel-based proteomic analysis of carbonylated proteins are illustrated where applicable. Analysis of carbonylated proteins by ELISA, immunofluorescent imaging, near infrared fluorescence detection, and gel-free proteomic approaches are also discussed where appropriate. Additionally, potential applications of blue native gel electrophoresis as a tool for first dimensional separation in 2D gel-based analysis of carbonylated proteins are discussed as well.  相似文献   

20.
The purpose of this study was to explore the mechanisms by which oxidative stress affects the aging process. The hypothesis that the rate of accumulation of oxidative damage to specific mitochondrial proteins is linked to the life expectancy of animals was tested in the housefly. The rate of oxygen consumption and life expectancy of the flies were experimentally altered by confining the flies in small jars, where they were unable to fly. Prevention of flight activity decreased the rate of oxygen utilization of flies and almost tripled their life span as compared to those permitted to fly. Rate of mitochondrial H(2)O(2) generation at various ages was lower in the low activity flies than in the high activity flies. Oxidative damage to mitochondrial proteins, adenine nucelotide translocase, and aconitase, detected as carbonyl modifications, was attenuated; and the loss in their functional activity occurring with age was retarded in the long-lived low activity flies as compared to the short-lived high activity flies. The two proteins were previously identified to be the only mitochondrial proteins exhibiting age-related increases in carbonylation. Results support the hypothesis that accrual of oxidative damage to specific protein targets and the consequent loss of their function may constitute a mechanism by which oxidative stress controls the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号