首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the worldwide efforts at molecular analysis of Arabidopsis thaliana as a model plant the complete structure of the mitochondrial genome has been determined. The mitochondrial DNA molecules were mapped by restriction fragment analysis of more than 300 cosmid clones and purified mitochondrial DNA. The entire genome of 372 kb is contained in three different configurations of circular molecules and is split into two additional subgenomic molecules of 234 kb and 138 kb, respectively. These arrangements result from recombinations of the two sets of repeats present in combinations of inverted and/or direct orientation. Alignment of YAC clones confirms the in vivo presence of continuous DNA molecules of more than 300 kb in A. thaliana mitochondria. The presence of this comparatively large mitochondrial genome in a plant with one of the smallest nuclear genomes shows that different size constraints act upon the different genomes in plant cells.  相似文献   

2.
The mitochondrial genome of yeast.   总被引:51,自引:0,他引:51  
P Borst  L A Grivell 《Cell》1978,15(3):705-723
  相似文献   

3.
Physical mapping of the Mycoplasma capricolum genome   总被引:7,自引:0,他引:7  
A physical map of Mycoplasma capricolum ATCC 27343 genome was constructed, based on estimation of the restriction fragment sizes by pulse-field electrophoresis. The linkage order of restriction fragments was determined by two-dimensional electrophoresis of partial and complete single digests and complete double digests and by Southern hybridization analysis. The genome size was established at 1155.5 kb, and 26 cleavage sites for 7 endonucleases were assigned to the map.  相似文献   

4.
Transcriptional mapping of the rat liver mitochondrial genome   总被引:1,自引:0,他引:1  
  相似文献   

5.
We report an analysis of the sequences used in the excision of the mitochondrial genomes of 22 spontaneous and ten ethidium bromide (EtBr)-induced Saccharomyces cerevisiae petite mutants. In all cases, excision sequences were found to be perfect direct repeats, often flanked on one or both sides by regions of patchy homology. Sequences used in the excision of the genomes of spontaneous petites were always located in the AT spacers and GC clusters of intergenic regions of the genome; the GC clusters corresponded to ori and oris sequences, namely to canonical and surrogate origins of DNA replication, respectively. In the case of the ethidium bromide-induced petites, excision sequences were found not only in intergenic sequences, but also in the introns and exons of mitochondrial genes.  相似文献   

6.
This paper describes the physical mapping of five antibiotic resistance markers on the mitochondrial genome of Saccharomyces cerevisiae. The physical separations between markers were derived from studies involving a series of stable spontaneous petite strains which were isolated and characterized for the loss or retention of combinations of the five resistance markers. DNA-DNA hybridization using 32P-labelled grande mitochondrial DNA was employed to determine the fraction of grande mitochondrial DNA sequences retained by each of the defined petite strains.One petite clone retaining four of the markers in a segment comprising 36% of the grande genome was then chosen as a reference petite. The sequence homology between the mitochondrial DNA of this petite and that of the other petites was measured by DNA-DNA hybridization. For each petite, the total length of its genome derived by hybridization with grande mitochondrial DNA and the fraction of the grande genome retained in common with the reference petite, together with the genetic markers retained in common, were used to position the DNA segment of each petite relative to the reference petite genome. At the same time the relative physical location of the five markers on a circular genome was established. On the basis of the grande mitochondrial genome being defined as 100 units of DNA, the positions of the markers were determined to bo as follows, measuring from one end of the reference petite genome. chloramphenicol (cap1) ~ 0 units erythromycin (ery1) 0 to 15 units oligomycin (oli1) 18 to 19 units mikamycin (mik1) 22 to 25 units paromomycin (par1) 61 to 73 unitsThe general problems of mapping mitochondrial genetic markers by hybridizations involving petite mitochondrial DNA are discussed. Two very important features of petite genomes which could invalidate the interpretation of DNA-DNA hybridization experiments between petite mitochondrial DNAs are the possible presence in the reference petite of differentially amplified DNA sequences, and/or “new” sequences which are not present in the parent grande genome. A general procedure, which overcomes errors of interpretation arising from these two features is described.  相似文献   

7.
A mechanism is proposed to explain how a mutation in a single molecule of mitochondrial DNA (mitDNA) can come to affect all the other mitDNA molecules of a yeast cell. It is suggested that an initial mutation may be “amplified” by a process which is, in fact, intended to ensure the identity of the cell's complement of mitDNA molecules. It is postulated that this process involves a small number of “reference” copies of mitDNA to which all other (“derived”) copies are compared and corrected once per cell cycle. Asymmetric gene conversion is proposed as the correction mechanism and the means of “amplifying” mutations. The model is shown to be compatible with current data on spontaneous and induced mitochondrial mutation in Saccharomyces cerevisiae.  相似文献   

8.
Physical mapping of the rice genome with BACs   总被引:10,自引:0,他引:10  
Zhang  Hong-Bin  Wing  Rod A. 《Plant molecular biology》1997,35(1-2):115-127
The development of genetics in this century has been catapulted forward by several milestones: rediscovery of Mendel's laws, determination of DNA as the genetic material, discovery of the double-helix structure of DNA and its implications for genetic behavior, and most recently, analysis of restriction fragment length polymorphisms (RFLPs). Each of these milestones has generated a huge wave of progress in genetics. Consequently, our understanding of organismal genetics now extends from phenotypes to their molecular genetic basis. It is now clear that the next wave of progress in genetics will hinge on genome molecular physical mapping, since a genome physical map will provide an invaluable, readily accessible system for many detailed genetic studies and isolation of many genes of economic or biological importance. Recent development of large-DNA fragment (>100 kb) manipulation and cloning technologies, such as pulsed-field gel electrophoresis (PFGE), and yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) cloning, has provided the powerful tools needed to generate molecular physical maps for higher-organism genomes. This chapter will discuss (1) an ideal physical map of plant genome and its applications in plant genetic and biological studies, (2) reviews on physical mapping of the genomes of Caenorhabditis elegans, Arabidopsis thaliana, and man, (3) large-insert DNA libraries: cosmid, YAC and BAC, and genome physical mapping, (4) physical mapping of the rice genome with BACs, and (5) perspectives on the physical mapping of the rice genome with BACs.  相似文献   

9.
Physical mapping of the Mycoplasma pneumoniae genome.   总被引:22,自引:7,他引:15       下载免费PDF全文
In order to study the genome organization of Mycoplasma pneumoniae a cosmid library of M. pneumoniae DNA was established using a newly designed cosmid vector (pcosRW2). From this library 32 overlapping clones were isolated covering a contiguous 720 kbp DNA segment representing about 90% of the genome assuming a genome size of about 800 kbp.  相似文献   

10.
Summary The mitochondrial genome of yeast (S. cerevisiae orS. carlsbergensis) appears to be formed by 60–70 genetic units, each one of which is formed by (1) a GC-rich sequence, possibly having a regulatory role; (2) a gene, and (3) an AT-rich spacer, which probably is not transcribed. Recombination in this genome appears to underlie a number of important phenomena. The organization of the mitochondrial genome of yeast and these recombinational events are discussed in relationship with the organization and evolution of the nuclear genome of eukaryotes.  相似文献   

11.
12.
13.
14.
15.
Summary An approach for the screening of mit - mutants, the isolation and preliminary classification of a series of such mutants is reported. Loss and retention of 8 mit - and 6 drug r markers in mitDNA was analyzed in populations of rho- clones derived from four yeast strains. The populations studied constitute a representative fraction of the rho- petites formed during growth at 35° C under the influence of mutation tsp-25 which is in common to the four strains. The majority of the rho- clones retained several of the markers studied. Depending on the marker regarded retention frequencies between 15% (oxi3) and 45% (oli1, cob) were observed. Loss of one and retention of the other of a pair of markers was determined in all rho- clones of the four populations. The frequencies of marker separation by rho- deletion thus obtained are assumed to reflect the distance between markers on the mitochondrial genome: the higher the frequency of separation the longer the distance between two markers. Based on these frequencies a unique order of markers on a circular map was determined. Positions of markers on a scale from 0 to 100 were found to be: cap/ery (0) — olil (16) — cob1-1354 (21) — ana101 (22) — cob2-1625 (24) — oli2 (35) — pho1 (40) — oxi3-2501 (44) — oxi3-3771 (47) — par (65) — oxi2 (79) — oxil (87) tms8 (93) —cap (100). The relevance of this map as to the faithful representation of the topology of gene loci on mitDNA is discussed. Correlation of retention frequencies of markers to their map positions reveals a pronounced polarity: mitDNA segments carrying the cob-oli1 segment prevail whereas segments retaining oxi3 are the least frequent.  相似文献   

16.
Here, we report the complete nucleotide sequence of the 39 107-bp mitochondrial genome of the yeast Pichia sorbitophila . This genome is closely related to those of Candida parapsilosis and Debaryomyces hansenii , as judged from sequence similarities and synteny conservation. It encodes three subunits of cytochrome oxidase ( COX1, COX2 and COX3 ), three subunits of ATP synthase ( ATP6, ATP8 and ATP9 ), the seven subunits of NADH dehydrogenase ( NAD1-6 and NAD4L ), the apocytochrome b ( COB ), the large and small rRNAs and a complete set of tRNAs. Although the mitochondrial genome of P. sorbitophila contains the same core of mitochondrial genes observed in the ascomycetous yeasts, those coding for the RNAse P and the ribosomal protein VAR1p are missing. Moreover, the mtDNA of P. sorbitophila contains several introns in its genes and has the particularity of possessing an intron, which is not linked to any upstream exon.  相似文献   

17.
Physical mapping of the rice genome with YAC clones   总被引:6,自引:0,他引:6  
Construction of a rice physical map covered by YAC clones which have been arranged over half of the genome length is presented here. A total of 1285 RFLP and RAPD markers almost evenly distributed on the rice genetic map could select 2974 YAC clones and 2443 clones of them were located on their original positions. Rice YACs carrying 350 kb average insert fragments of 2443 clones could cover 222 megabase length of the rice genome, corresponding to 52% of the whole genome size (4.3 Mb). Chromosome landing with many YAC clones on the high-density genetic map loci efficiently integrated the genetic map with a physical map. This is the first step to generate a comprehensive genome map of rice. An integrated genome map should be an indispensable tool to figure out genome structure as well as to clone trait genes by map-based cloning.  相似文献   

18.
Recent investigations have provided information on the origin of replication of the mitochondrial genome of yeast and an explanation for the phenomenon of the suppressivity.  相似文献   

19.
20.
Abstract The mitochondrial DNA was isolated from Aspergillus niger WU-2223L, a citric acid-production strain, and characterized by restriction-endonuclease mapping. Cloned fragments which covered the total range of the mitochondrial DNA were assembled and utilized to construct the restriction-endonuclease map for nine restriction enzymes. This map showed that the mitochondrial DNA was a circular molecule of 32.6 kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号