共查询到20条相似文献,搜索用时 15 毫秒
1.
J. L. Lutze J. S. Roden C. J. Holly J. Wolfe J. J. G. Egerton & M. C. Ball 《Plant, cell & environment》1998,21(6):631-635
Growth under elevated [CO2 ] promoted spring frost damage in field grown seedlings of snow gum ( Eucalyptus pauciflora Sieb. ex Spreng.), one of the most frost tolerant of eucalypts. Freezing began in the leaf midvein, consistent with it being a major site of frost damage under field conditions. The average ice nucleation temperature was higher in leaves grown under elevated [CO2 ] (– 5·7 °C versus – 4·3 °C), consistent with the greater incidence of frost damage in these leaves (34% versus 68% of leaves damaged). These results have major implications for agriculture, forestry and vegetation dynamics, as an increase in frost susceptibility may reduce potential gains in productivity from CO2 fertilization and may affect predictions of vegetation change based on increasing temperature. 相似文献
2.
A meta-analysis of elevated [CO2 ] effects on soybean (Glycine max) physiology, growth and yield 总被引:7,自引:2,他引:7
Elizabeth A. Ainsworth Phillip A. Davey Carl J. Bernacchi Orla C. Dermody Emily A. Heaton David J. Moore Patrick B. Morgan Shawna L. Naidu Hyung-shim Yoo Ra Xin-guang Zhu Peter S. Curtis Stephen P. Long 《Global Change Biology》2002,8(8):695-709
The effects of elevated [CO2] on 25 variables describing soybean physiology, growth and yield are reviewed using meta‐analytic techniques. This is the first meta‐analysis to our knowledge performed on a single crop species and summarizes the effects of 111 studies. These primary studies include numerous soybean growth forms, various stress and experimental treatments, and a range of elevated [CO2] levels (from 450 to 1250 p.p.m.), with a mean of 689 p.p.m. across all studies. Stimulation of soybean leaf CO2 assimilation rate with growth at elevated [CO2] was 39%, despite a 40% decrease in stomatal conductance and a 11% decrease in Rubisco activity. Increased leaf CO2 uptake combined with an 18% stimulation in leaf area to provide a 59% increase in canopy photosynthetic rate. The increase in total dry weight was lower at 37%, and seed yield still lower at 24%. This shows that even in an agronomic species selected for maximum investment in seed, several plant level feedbacks prevent additional investment in reproduction, such that yield fails to reflect fully the increase in whole plant carbon uptake. Large soil containers (> 9 L) have been considered adequate for assessing plant responses to elevated [CO2]. However, in open‐top chamber experiments, soybeans grown in large pots showed a significant threefold smaller stimulation in yield than soybeans grown in the ground. This suggests that conclusions about plant yield based on pot studies, even when using very large containers, are a poor reflection of performance in the absence of any physical restriction on root growth. This review supports a number of current paradigms of plant responses to elevated [CO2]. Namely, stimulation of photosynthesis is greater in plants that fix N and have additional carbohydrate sinks in nodules. This supports the notion that photosynthetic capacity decreases when plants are N‐limited, but not when plants have adequate N and sink strength. The root : shoot ratio did not change with growth at elevated [CO2], sustaining the charge that biomass allocation is unaffected by growth at elevated [CO2] when plant size and ontogeny are considered. 相似文献
3.
Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure 总被引:2,自引:0,他引:2
Victoria E. Wittig Carl J. Bernacchi † Xin-Guang Zhu Carlo Calfapietra‡ Reinhart Ceulemans§ Paolo Deangelis‡ Birgit Gielen§ Franco Miglietta¶ Patrick B. Morgan Stephen P. Long 《Global Change Biology》2005,11(4):644-656
How forests will respond to rising [CO2] in the long term is uncertain, most studies having involved juvenile trees in chambers prior to canopy closure. Poplar free‐air CO2 enrichment (Viterbo, Italy) is one of the first experiments to grow a forest from planting through canopy closure to coppice, entirely under open‐air conditions using free‐air CO2 enrichment technology. Three Populus species: P. alba, P. nigra and P. x euramericana, were grown in three blocks, each containing one control and one treatment plot in which CO2 was elevated to the expected 2050 concentration of 550 ppm. The objective of this study was to estimate gross primary production (GPP) from recorded leaf photosynthetic properties, leaf area index (LAI) and meteorological conditions over the complete 3‐year rotation cycle. From the meteorological conditions recorded at 30 min intervals and biweekly measurements of LAI, the microclimate of leaves within the plots was estimated with a radiation transfer and energy balance model. This information was in turn used as input into a canopy microclimate model to determine light and temperature of different leaf classes at 30 min intervals which in turn was used with the steady‐state biochemical model of leaf photosynthesis to compute CO2 uptake by the different leaf classes. The parameters of these models were derived from measurements made at regular intervals throughout the coppice cycle. The photosynthetic rates for different leaf classes were summed to obtain canopy photosynthesis, i.e. GPP. The model was run for each species in each plot, so that differences in GPP between species and treatments could be tested statistically. Significant stimulation of GPP driven by elevated [CO2] occurred in all 3 years, and was greatest in the first year (223–251%), but markedly lower in the second (19–24%) and third years (5–19%). Increase in GPP in elevated relative to control plots was highest for P. nigra in 1999 and for P. x euramericana in 2000 and 2001, although in 1999 P. alba had a higher GPP than P. x euramericana. Our analysis attributed the decline in stimulation to canopy closure and not photosynthetic acclimation. Over the 3‐year rotation cycle from planting to harvest, the cumulative GPP was 4500, 4960 and 4010 g C m?2 for P. alba, P. nigra and P. x euramericana, respectively, in current [CO2] and 5260, 5800 and 5000 g C m?2 in the elevated [CO2] treatments. The relative changes were consistent with independent measurements of net primary production, determined independently from biomass increments and turnover. 相似文献
4.
The composition and morphology of leaves exposed to elevated [CO2 ] usually change so that the leaf nitrogen (N) per unit dry mass decreases and the leaf dry mass per unit area increases. However, at ambient [CO2 ], leaves with a high leaf dry mass per unit area usually have low leaf N per unit dry mass. Whether the changes in leaf properties induced by elevated [CO2 ] follow the same overall pattern as that at ambient [CO2 ] has not previously been addressed. Here we address this issue by using leaf measurements made at ambient [CO2 ] to develop an empirical model of the composition and morphology of leaves. Predictions from that model are then compared with a global database of leaf measurements made at ambient [CO2 ]. Those predictions are also compared with measurements showing the impact of elevated [CO2 ]. In the empirical model both the leaf dry mass and liquid mass per unit area are positively correlated with leaf thickness, whereas the mass of C per unit dry mass and the mass of N per unit liquid mass are constant. Consequently, both the N:C ratio and the surface area:volume ratio of leaves are positively correlated with the liquid content. Predictions from that model were consistent with measurements of leaf properties made at ambient [CO2 ] from around the world. The changes induced by elevated [CO2 ] follow the same overall trajectory. It is concluded that elevated [CO2 ] enhances the rate at which dry matter is accumulated but the overall trajectory of leaf development is conserved. 相似文献
5.
Mean surface ozone concentration is predicted to increase 23% by 2050. Previous chamber studies of crops report large yield losses caused by elevation of tropospheric ozone, and have been the basis for projecting economic loss. This is the first study with a food crop (soybean, Glycine max) using free-air gas concentration enrichment (FACE) technology for ozone fumigation. A 23% increase in ozone concentration from an average daytime ambient 56 p.p.b. to a treatment 69 p.p.b. over two growing seasons decreased seed yield by 20%. Total above-ground net primary production decreased by 17% without altering dry mass allocation among shoot organs, except seed. Fewer live leaves and decreased photosynthesis in late grain filling appear to drive the ozone-induced losses in production and yield. These results validate previous chamber studies suggesting that soybean yields will decrease under increasing ozone exposure. In fact, these results suggest that when treated under open-air conditions yield losses may be even greater than the large losses already reported in earlier chamber studies. Yield losses with elevated ozone were greater in the second year following a severe hailstorm, suggesting that losses caused by ozone might be exacerbated by extreme climatic events. 相似文献
6.
Fitzgerald L. Booker † Stephen A. Prior‡ H. Allen Torbert‡ Edwin L. Fiscus † Walter A. Pursley † Shuijin Hu§ 《Global Change Biology》2005,11(4):685-698
A critical global climate change issue is how increasing concentrations of atmospheric CO2 and ground‐level O3 will affect agricultural productivity. This includes effects on decomposition of residues left in the field and availability of mineral nutrients to subsequent crops. To address questions about decomposition processes, a 2‐year experiment was conducted to determine the chemistry and decomposition rate of aboveground residues of soybean (Glycine max (L.) Merr.) grown under reciprocal combinations of low and high concentrations of CO2 and O3 in open‐top field chambers. The CO2 treatments were ambient (370 μmol mol?1) and elevated (714 μmol mol?1) levels (daytime 12 h averages). Ozone treatments were charcoal‐filtered air (21 nmol mol?1) and nonfiltered air plus 1.5 times ambient O3 (74 nmol mol?1) 12 h day?1. Elevated CO2 increased aboveground postharvest residue production by 28–56% while elevated O3 suppressed it by 15–46%. In combination, inhibitory effects of added O3 on biomass production were largely negated by elevated CO2. Plant residue chemistry was generally unaffected by elevated CO2, except for an increase in leaf residue lignin concentration. Leaf residues from the elevated O3 treatments had lower concentrations of nonstructural carbohydrates, but higher N, fiber, and lignin levels. Chemical composition of petiole, stem, and pod husk residues was only marginally affected by the elevated gas treatments. Treatment effects on plant biomass production, however, influenced the content of chemical constituents on an areal basis. Elevated CO2 increased the mass per square meter of nonstructural carbohydrates, phenolics, N, cellulose, and lignin by 24–46%. Elevated O3 decreased the mass per square meter of these constituents by 30–48%, while elevated CO2 largely ameliorated the added O3 effect. Carbon mineralization rates of component residues from the elevated gas treatments were not significantly different from the control. However, N immobilization increased in soils containing petiole and stem residues from the elevated CO2, O3, and combined gas treatments. Mass loss of decomposing leaf residue from the added O3 and combined gas treatments was 48% less than the control treatment after 20 weeks, while differences in decomposition of petiole, stem, and husk residues among treatments were minor. Decreased decomposition of leaf residues was correlated with lower starch and higher lignin levels. However, leaf residues only comprised about 20% of the total residue biomass assayed so treatment effects on mass loss of total aboveground residues were relatively small. The primary influence of elevated atmospheric CO2 and O3 concentrations on decomposition processes is apt to arise from effects on residue mass input, which is increased by elevated CO2 and suppressed by O3. 相似文献
7.
M. Schortemeyer O. K. Atkin N. McFarlane & J. R. Evans 《Plant, cell & environment》2002,25(4):567-579
In the present study the effect of elevated CO2 on growth and nitrogen fixation of seven Australian Acacia species was investigated. Two species from semi‐arid environments in central Australia (Acacia aneura and A. tetragonophylla) and five species from temperate south‐eastern Australia (Acacia irrorata, A. mearnsii, A. dealbata, A. implexa and A. melanoxylon) were grown for up to 148 d in controlled greenhouse conditions at either ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 concentrations. After establishment of nodules, the plants were completely dependent on symbiotic nitrogen fixation. Six out of seven species had greater relative growth rates and lower whole plant nitrogen concentrations under elevated versus normal CO2. Enhanced growth resulted in an increase in the amount of nitrogen fixed symbiotically for five of the species. In general, this was the consequence of lower whole‐plant nitrogen concentrations, which equate to a larger plant and greater nodule mass for a given amount of nitrogen. Since the average amount of nitrogen fixed per unit nodule mass was unaltered by atmospheric CO2, more nitrogen could be fixed for a given amount of plant nitrogen. For three of the species, elevated CO2 increased the rate of nitrogen fixation per unit nodule mass and time, but this was completely offset by a reduction in nodule mass per unit plant mass. 相似文献
8.
BRUCE A. KIMBALL † PAUL J. PINTER Jr. † RICHARD L. GARCIA † ROBERT L. LaMORTE † GERARD W. WALL † DOUGLAS J. HUNSAKER † GABRIELE WECHSUNG ‡ FRANK WECHSUNG§ THOMAS KARTSCHALL§§ 《Global Change Biology》1995,1(6):429-442
A free-air CO2 enrichment (FACE) experiment was conducted at Maricopa, Arizona, on wheat from December 1992 through May 1993. The FACE apparatus maintained the CO2 concentration, [CO2], at 550 μmol mol?1 across four replicate 25-m-diameter circular plots under natural conditions in an open field. Four matching Control plots at ambient [CO2] (about 370 μmol mol?1) were also installed in the field. In addition to the two levels of [CO2], there were ample (Wet) and limiting (Dry) levels of water supplied through a subsurface drip irrigation system in a strip, split-plot design. Measurements were made of net radiation, Rn; soil heat flux, Go; soil temperature; foliage or surface temperature; air dry and wet bulb temperatures; and wind speed. Sensible heat flux, H, was calculated from the wind and temperature measurements. Latent heat flux, λET, and evapotranspiration, ET, were determined as the residual in the energy balance. The FACE treatment reduced daily total Rn by an average 4%. Daily FACE sensible heat flux, H, was higher in the FACE plots. Daily latent heat flux, λET, and evapotranspiration, ET, were consistently lower in the FACE plots than in the Control plots for most of the growing season, about 8% on the average. Net canopy photosynthesis was stimulated by an average 19 and 44% in the Wet and Dry plots, respectively, by elevated [CO2] for most of the growing season. No significant acclimation or down regulation was observed. There was little above-ground growth response to elevated [CO2] early in the season when temperatures were cool. Then, as temperatures warmed into spring, the FACE plants grew about 20% more than the Control plants at ambient [CO2], as shown by above-ground biomass accumulation. Root biomass accumulation was also stimulated about 20%. In May the FACE plants matured and senesced about a week earlier than the Controls in the Wet plots. The FACE plants averaged 0.6 °C warmer than the Controls from February through April in the well-watered plots, and we speculate that this temperature rise contributed to the earlier maturity. Because of the acceleration of senescence, there was a shortening of the duration of grain filling, and consequently, there was a narrowing of the final biomass and yield differences. The 20% mid-season growth advantage of FACE shrunk to about an 8% yield advantage in the Wet plots, while the yield differences between FACE and Control remained at about 20% in the Dry plots. 相似文献
9.
10.
11.
Free Air CO2 Enrichment of potato (Solanum tuberosum L.): development, growth and yield 总被引:1,自引:0,他引:1
F. Miglietta V. Magliulo † M. Bindi ‡ L. Cerio † F. P. Vaccari V. Loduca A. Peressotti§ 《Global Change Biology》1998,4(2):163-172
A FACE (Free Air CO2 Enrichment) experiment was carried out on Potato (Solanum tuberosum L., cv. Primura) in 1995 in Italy. Three FACE rings were used to fumigate circular field plots of 8 m diameter while two rings were used as controls at ambient CO2 concentrations. Four CO2 exposure levels were used in the rings (ambient, 460, 560 and 660 μmol mol–1). Phenology and crop development, canopy surface temperature, above- and below-ground biomass were monitored during the growing season. Crop phenology was affected by elevated CO2, as the date of flowering was progressively anticipated in the 660, 560, 460 μmol mol–1 treatments. Crop development was not affected significantly as plant height, leaf area and the number of leaves per plant were the same in the four treatments. Elevated atmospheric CO2 levels had, instead, a significant effect on the accumulation of total nonstructural carbohydrates (TNC = soluble sugars + starch) in the leaves during a sunny day. Specific leaf area was decreased under elevated CO2 with a response that paralleled that of TNC concentrations. This reflected the occurrence of a progressive increase of photosynthetic rates and carbon assimilation in plants exposed to increasingly higher levels of atmospheric CO2. Tuber growth and final tuber yield were also stimulated by rising CO2 levels. When calculated by regression of tuber yield vs. the imposed levels of CO2concentration, yield stimulation was as large as 10% every 100 μmol mol–1 increase, which translated into over 40% enhancement in yield under 660 μmol mol–1. This was related to a higher number of tubers rather than greater mean tuber mass or size. Leaf senescence was accelerated under elevated CO2 and a linear relationship was found between atmospheric CO2 levels and leaf reflectance measured at 0.55 μm wavelength. We conclude that significant CO2 stimulation of yield has to be expected for potato under future climate scenarios, and that crop phenology will be affected as well. 相似文献
12.
The role of temperature in determining the stimulation of CO2 assimilation at elevated carbon dioxide concentration in soybean seedlings 总被引:1,自引:0,他引:1
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1 ) and elevated (ca 700 μmol mol−1 ) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level. 相似文献
13.
Effects of long-term elevated [CO2 ] from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology 总被引:2,自引:1,他引:2
Plants of Nardus stricta growing near a cold, naturally emitting CO2 spring in Iceland were used to investigate the long-term (> 100 years) effects of elevated [CO2 ] on photosynthesis, biochemistry, growth and phenology in a northern grassland ecosystem. Comparisons were made between plants growing in an atmosphere naturally enriched with CO2 (≈ 790 μ mol mol–1 ) near the CO2 spring and plants of the same species growing in adjacent areas exposed to ambient CO2 concentrations (≈360 μ mol mol–1 ). Nardus stricta growing near the spring exhibited earlier senescence and reductions in photosynthetic capacity (≈25%), Rubisco content (≈26%), Rubisco activity (≈40%), Rubisco activation state (≈23%), chlorophyll content (≈33%) and leaf area index (≈22%) compared with plants growing away from the spring. The potential positive effects of elevated [CO2 ] on grassland ecosystems in Iceland are likely to be reduced by strong down-regulation in the photosynthetic apparatus of the abundant N. stricta species. 相似文献
14.
Monique Carnol Laure Hogenboom M. Ewa Jach† Jean Remacle Reinhart Ceulemans† 《Global Change Biology》2002,8(6):590-598
The control of soil nitrogen (N) availability under elevated atmospheric CO2 is central to predicting changes in ecosystem carbon (C) storage and primary productivity. The effects of elevated CO2 on belowground processes have so far attracted limited research and they are assumed to be controlled by indirect effects through changes in plant physiology and chemistry. In this study, we investigated the effects of a 4‐year exposure to elevated CO2 (ambient + 400 µmol mol?1) in open top chambers under Scots pine (Pinus sylvestris L) seedlings on soil microbial processes of nitrification and denitrification. Potential denitrification (DP) and potential N2O emissions were significantly higher in soils from the elevated CO2 treatment, probably regulated indirectly by the changes in soil conditions (increased pH, C availability and NO3– production). Net N mineralization was mainly accounted for by nitrate production. Nitrate production was significantly larger for soil from the elevated CO2 treatment in the field when incubated in the laboratory under elevated CO2 (increase of 100%), but there was no effect when incubated under ambient CO2. Net nitrate production of the soil originating from the ambient CO2 treatment in the field was not influenced by laboratory incubation conditions. These results indicate that a direct effect of elevated atmospheric CO2 on soil microbial processes might take place. We hypothesize that physiological adaptation or selection of nitrifiers could occur under elevated CO2 through higher soil CO2 concentrations. Alternatively, lower microbial NH4 assimilation under elevated CO2 might explain the higher net nitrification. We conclude that elevated atmospheric CO2 has a major direct effect on the soil microbial processes of nitrification and denitrification despite generally higher soil CO2 concentrations compared to atmospheric concentrations. 相似文献
15.
Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean 总被引:1,自引:1,他引:1
Rice (Oryza sativa L. cv. IR-72) and soybean (Glycine max L. Merr. cv. Bragg), which have been reported to differ in acclimation to elevated CO2, were grown for a season in sunlight at ambient and twice-ambient [CO2], and under daytime temperature regimes ranging from 28 to 40°C. The objectives of the study were to test whether CO2 enrichment could compensate for adverse effects of high growth temperatures on photosynthesis, and whether these two C3 species differed in this regard. Leaf photosynthetic assimilation rates (A) of both species, when measured at the growth [CO2], were increased by CO2 enrichment, but decreased by supraoptimal temperatures. However, CO2 enrichment more than compensated for the temperature-induced decline in A. For soybean, this CO2 enhancement of A increased in a linear manner by 32–95% with increasing growth temperatures from 28 to 40°C, whereas with rice the degree of enhancement was relatively constant at about 60%, from 32 to 38°C. Both elevated CO2 and temperature exerted coarse control on the Rubisco protein content, but the two species differed in the degree of responsiveness. CO2 enrichment and high growth temperatures reduced the Rubisco content of rice by 22 and 23%, respectively, but only by 8 and 17% for soybean. The maximum degree of Rubisco down-regulation appeared to be limited, as in rice the substantial individual effects of these two variables, when combined, were less than additive. Fine control of Rubisco activation was also influenced by both elevated [CO2] and temperature. In rice, total activity and activation were reduced, but in soybean only activation was lowered. The apparent catalytic turnover rate (Kcat) of rice Rubisco was unaffected by these variables, but in soybean elevated [CO2] and temperature increased the apparent Kcat by 8 and 22%, respectively. Post-sunset declines in Rubisco activities were accelerated by elevated [CO2] in rice, but by high temperature in soybean, suggesting that [CO2] and growth temperature influenced the metabolism of 2-carboxyarabinitol-1-phosphate, and that the effects might be species-specific. The greater capacity of soybean for CO2 enhancement of A at supraoptimal temperatures was probably not due to changes in stomatal conductance, but may be partially attributed to less down-regulation of Rubisco by elevated [CO2] in soybean than in rice. However, unidentified species differences in the temperature optimum for photosynthesis also appeared to be important. The responses of photosynthesis and Rubisco in rice and soybean suggest that among C3 plants species-specific differences will be encountered as a result of future increases in global [CO2] and air temperatures. 相似文献
16.
Effects of elevated [CO2 ] on photosynthesis in European forest species: a meta-analysis of model parameters 总被引:6,自引:6,他引:6
B. E. Medlyn F. -W. Badeck D. G. G. De Pury C. V. M. Barton M. Broadmeadow R. Ceulemans P. De Angelis M. Forstreuter M. E. Jach S. Kellomäki E. Laitat M. Marek S. Philippot A. Rey J. Strassemeyer K. Laitinen R. Liozon B. Portier P. Roberntz K. Wang & P. G. Jstbid 《Plant, cell & environment》1999,22(12):1475-1495
The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given. 相似文献
17.
Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment 总被引:2,自引:1,他引:2
HAN-YONG KIM MARK LIEFFERING† KAZUHIKO KOBAYASHI‡ MASUMI OKADA§ SHU MIURA¶ 《Global Change Biology》2003,9(6):826-837
Over time, the stimulative effect of elevated CO2 on the photosynthesis of rice crops is likely to be reduced with increasing duration of CO2 exposure, but the resultant effects on crop productivity remain unclear. To investigate seasonal changes in the effect of elevated CO2 on the growth of rice (Oryza sativa L.) crops, a free air CO2 enrichment (FACE) experiment was conducted at Shizukuishi, Iwate, Japan in 1998–2000. The target CO2 concentration of the FACE plots was 200 µmol mol?1 above that of ambient. Three levels of nitrogen (N) were supplied: low (LN, 4 g N m?2), medium [MN, 8 (1998) and 9 (1999, 2000) g N m?2] and high N (HN, 12 and 15 g N m?2). For MN and HN but not for LN, elevated CO2 increased tiller number at panicle initiation (PI) but this positive response decreased with crop development. As a result, the response of green leaf area index (GLAI) to elevated CO2 greatly varied with development, showing positive responses during vegetative stages and negative responses after PI. Elevated CO2 decreased leaf N concentration over the season, except during early stage of development. For MN crops, total biomass increased with elevated CO2, but the response declined linearly with development, with average increases of 32, 28, 21, 15 and 12% at tillering, PI, anthesis, mid‐ripening and grain maturity, respectively. This decline is likely to be due to decreases in the positive effects of elevated CO2 on canopy photosynthesis because of reductions in both GLAI and leaf N. Up to PI, LN‐crops tended to have a lower response to elevated CO2 than MN‐ and HN‐crops, though by final harvest the total biomass response was similar for all N levels. For MN‐ and HN‐crops, the positive response of grain yield (ca. 15%) to elevated CO2 was slightly greater than the response of final total biomass while for LN‐crops it was less. We conclude that most of the seasonal changes in crop response to elevated CO2 are directly or indirectly associated with N uptake. 相似文献
18.
MARK J. HOVENDEN KAREN E. WILLS REBECCA E. CHAPLIN† JACQUELINE K. VANDER SCHOOR AMITY L. WILLIAMS YUI OSANAI PAUL C. D. NEWTON‡ 《Global Change Biology》2008,14(7):1633-1641
While the influence of elevated CO2 on the production, mass and quality of plant seeds has been well studied, the effect of warming on these characters is largely unknown; and there is practically no information on possible interactions between warming and elevated CO2 , despite the importance of these characters in population maintenance and recovery. Here, we present the impacts of elevated CO2 and warming, both in isolation and combination, on seed production, mass, quality, germination success and subsequent seedling growth of Austrodanthonia caespitosa , a dominant temperate C3 grass from Australia, using seeds collected from the TasFACE experiment. Mean seed production and mass were not significantly affected by either elevated CO2 or warming, but elevated CO2 more than doubled the proportion of very light, inviable seeds ( P < 0.05) and halved mean seed N concentration ( P < 0.04) and N content ( P < 0.03). The dependence of seed germination success on seed mass was affected by an elevated CO2 × warming interaction ( P < 0.004), such that maternal exposure to elevated CO2 or warming reduced germination if applied in isolation, but not when applied in combination. Maternal effects were retained when seedlings were grown in a common environment for 6 weeks, with seedlings descended from warmed plants 20% smaller ( P < 0.008) with a higher root : shoot ratio ( P < 0.001) than those from unwarmed plants. Given that both elevated CO2 and warming reduced seed mass, quality, germinability or seedling growth, it is likely that global change will reduce population growth or distribution of this dominant species. 相似文献
19.
20.
Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming 总被引:3,自引:0,他引:3
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1 ) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2 +↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction. 相似文献