首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.  相似文献   

2.
Biochemical studies have established the presence of a NO pathway in the heart, including sources of NO and various effectors. Several cardiac ion channels have been shown to be modified by NO, such as L-type Ca(2+), ATP-sensitive K(+), and pacemaker f-channels. Some of these effects are mediated by cGMP, through the activity of three main proteins: the cGMP-dependent protein kinase (PKG), the cGMP-stimulated phosphodiesterase (PDE2) and the cGMP-inhibited PDE (PDE3). Other effects appear independent of cGMP, as for instance the NO modulation of the ryanodine receptor-Ca(2+) channel. In the case of the cardiac L-type Ca(2+) channel current (I(Ca,L)), both cGMP-dependent and cGMP-independent effects have been reported, with important tissue and species specificity. For instance, in rabbit sinoatrial myocytes, NO inhibits the beta-adrenergic stimulation of I(Ca,L) through activation of PDE2. In cat and human atrial myocytes, NO potentiates the cAMP-dependent stimulation of I(Ca,L) through inhibition of PDE3. In rabbit atrial myocytes, NO enhances I(Ca,L) in a cAMP-independent manner through the activation of PKG. In ventricular myocytes, NO exerts opposite effects on I(Ca,L): an inhibition mediated by PKG in mammalian myocytes but by PDE2 in frog myocytes; a stimulation attributed to PDE3 inhibition in frog ventricular myocytes but to a direct effect of NO in ferret ventricular myocytes. Finally, NO can also regulate cardiac ion channels by a direct action on G-proteins and adenylyl cyclase.  相似文献   

3.
A fundamental question in physiology is how hormones regulate the functioning of a cell or organ. It was therefore the aim of this study to investigate the effect(s) of BNP-32 on calcium handling by ventricular myocytes obtained from the rat left ventricle. We specifically tested the hypothesis that BNP-32 decreased the L-type calcium current (I(Ca,L)). Perforated patch clamp technique was used to record I(Ca,L) and action potential (AP) in voltage and current clamp mode, respectively. Myocyte shortening was measured using a photodiode array edge-detection system and intracellular calcium transients were measured by fluorescence photometry. Western blotting was used to determine the relative change in the expression of proteins. At the concentrations tested, BNP-32 significantly decreased cell shortening in a dose-dependent manner; increased the phase II slope of the AP by 53.0%; increased the APD(50) by 16.9%; reduced the I(Ca,L) amplitude with a 22.9% decrease in the peak amplitude and reduced Ca(2+)-dependent inactivation; increased the V(1/2) activation of the L-type calcium channel by 51.1% and decreased V(1/2) inactivation by 31.8%; and, intracellular calcium transient amplitude was significantly decreased by 32.0%, whereas the time to peak amplitude and T(1/2) were both significantly increased by 38.7% and 89.4% respectively. Sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) protein expression was reduced by BNP-32. These data suggest that BNP-32 regulates ventricular myocyte function by attenuating I(Ca,L), altering the AP and reducing SERCA2a activity and/or expression. This study suggests a novel constitutive mechanism for the autocrine action of BNP on the L-type calcium channel in ventricular myocytes.  相似文献   

4.
We have previously shown an increase in arachidonic acid (AA) release in response to proinflammatory cytokines in adult rat ventricular myocytes (ARVM). AA is known to alter channel activities; however, its effects on cardiac L-type Ca(2+) channel current (I(Ca,L)) and excitation-contraction coupling remain unclear. The present study examined effects of AA on I(Ca,L), using the whole cell patch-clamp technique, and on cell shortening (CS) and the Ca(2+) transient of ARVM. I(Ca,L) was monitored in myocytes held at -70 mV and internally equilibrated and externally perfused with Na(+)- and K(+)-free solutions. Exposure to AA caused a voltage-dependent block of I(Ca,L) concentration dependently (IC(50) 8.5 microM). The AA-induced inhibition of I(Ca,L) is consistent with its hyperpolarizing shift in the voltage-dependent properties and reduction in maximum slope conductance. In the presence of AA, BSA completely blocked the AA-induced suppression of I(Ca,L) and CS. Intracellular load with AA had no effect on the current density but caused a small depolarizing shift in the I(Ca,L) activation curve, suggesting a site-specific action of AA. Moreover, intracellular AA had no effect on the extracellular AA-induced decrease in I(Ca,L). Pretreatment with indomethacin, an inhibitor of cyclooxygenase, or addition of nordihydroguaiaretic acid, an inhibitor of lipoxygenase, had no effect on AA-induced changes in I(Ca,L). Furthermore, AA suppressed CS and Ca(2+) transients of intact ARVM with no significant effect on SR function and myofilament Ca(2+) sensitivity. Therefore, these results suggest that AA inhibits contractile function of ARVM, primarily due to its direct inhibition of I(Ca,L) at an extracellular site.  相似文献   

5.
Desensitization of the beta-adrenergic receptor (beta-AR) response is well documented in hypertrophied hearts. We investigated whether beta-AR desensitization is also present at the cellular level in hypertrophied myocardium, as well as the physiological role of inhibitory G (G(i)) proteins and the L-type Ca(2+) channel in mediating beta-AR desensitization. Left ventricular (LV) myocytes were isolated from hypertrophied hearts of hypertensive Dahl salt-sensitive (DS) rats and nonhypertrophied hearts of normotensive salt-resistant (DR) rats. Cells were paced at a rate of 300 beats/min at 37 degrees C, and myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) were simultaneously measured. In response to increasing concentrations of isoproterenol, DR myocytes displayed a dose-dependent augmentation of cell shortening and the [Ca(2+)](i) transient amplitude, whereas hypertrophied DS myocytes had a blunted response of both cell shortening and the [Ca(2+)](i) transient amplitude. Interestingly, inhibition of G(i) proteins did not restore beta-AR desensitization in DS myocytes. The responses to increases in extracellular Ca(2+) and an L-type Ca(2+) channel agonist were also similar in both DS and DR myocytes. Isoproterenol-stimulated adenylyl cyclase activity, however, was blunted in hypertrophied myocytes. We concluded that compensated ventricular hypertrophy results in a blunted contractile response to beta-AR stimulation, which is present at the cellular level and independent of alterations in inhibitory G proteins and the L-type Ca(2+) channel.  相似文献   

6.
The purpose of this study is to determine the effects of brief rapid pacing (RP; approximately 200-240 beats/min for approximately 5 min) on contractile function in ventricular myocytes. RP was followed by a sustained inhibition of peak systolic cell shortening (-44 +/- 4%) that was not due to changes in diastolic cell length, membrane voltage, or L-type Ca(2+) current (I(Ca,L)). During RP, baseline and peak intracellular Ca(2+) concentration ([Ca(2+)](i)) increased markedly. After RP, Ca(2+) transients were similar to control. The effects of RP on cell shortening were not prevented by 1 microM calpain inhibitor I, 25 microM L-N(5)-(1-iminoethyl)-orthinthine, or 100 microM N(G)-monomethyl-L-arginine. However, RP-induced inhibition of cell shortening was prevented by lowering extracellular [Ca(2+)] (0.5 mM) during RP or exposure to chelerythrine (2-4 microM), a protein kinase C (PKC) inhibitor, or LY379196 (30 nM), a selective inhibitor of PKC-beta. Exposure to phorbol ester (200 nM phorbol 12-myristate 13-acetate) inhibited cell shortening (-46 +/- 7%). Western blots indicated that cat myocytes express PKC-alpha, -delta, and -epsilon as well as PKC-beta. These findings suggest that brief RP of ventricular myocytes depresses contractility at the myofilament level via Ca(2+)/PKC-dependent signaling. These findings may provide insight into the mechanisms of contractile dysfunction that follow paroxysmal tachyarrhythmias.  相似文献   

7.
The effect of aging on cardiac membrane currents remains unclear. This study examined the inward rectifier K(+) current (I(K1)), the transient outward K(+) current (I(to)), and the L-type Ca(2+) channel current (I(Ca,L)) in ventricular myocytes isolated from young adult (6 mo) and aged (>27 mo) Fischer 344 rats using whole cell patch-clamp techniques. Along with an increase in the cell size and membrane capacitance, aged myocytes had the same magnitude of peak I(K1) with a greater slope conductance but displayed smaller steady-state I(K1). Aged myocytes also had a greater I(to) with an increased rate of activation, but the I(to) inactivation kinetics, steady-state inactivation, and responsiveness to L-phenylephrine, an alpha(1)-adrenergic agonist, were unaltered. The magnitude of peak I(Ca,L) in aged myocytes was decreased and accompanied by a slower inactivation, but the I(Ca,L) steady-state inactivation was unaltered. Action potential duration in aged myocytes was prolonged only at 90% of full repolarization (APD(90)) when compared with the action potential duration of young adult myocytes. Aged myocytes from Long-Evans rats showed similar changes in I(to) and I(Ca,L) but an increased I(K1). These results demonstrate aging-associated changes in action potential, in morphology, and in I(K1), I(to), and I(Ca,L) of rat ventricular myocytes that possibly contribute to the decreased cardiac function of aged hearts.  相似文献   

8.
单羧酸类Cl-通道阻断剂对心室肌CFTR Cl-通道的影响   总被引:4,自引:2,他引:2  
Zhou SS  Zang YM 《生理学报》1999,51(3):297-302
本文采用全细胞膜片箝与细胞内灌注技术,观察了单羧酸类Cl^-通道阻断剂对豚鼠心室肌囊性纤维变性膜透性调节蛋白(CFTR)Cl^-电流的影响,细胞包9-AC以可逆方式增强异丙肾上腺素(ISO)激发的CFTRCl^-的外向电流成分,5-nitro-2-(3-phenylpropylamino)-benzoate(NPPB)和二苯胺羧酸(DPC)对ISO发的CFTRCl^-电流的作用呈现先增强后抑制的双  相似文献   

9.
Limited information is available regarding the effects of protein kinase C (PKC) isozyme(s) in the regulation of L-type Ca(2+) channels due to lack of isozyme-selective modulators. To dissect the role of individual PKC isozymes in the regulation of cardiac Ca(2+) channels, we used the recently developed novel peptide activator of the epsilonPKC, epsilonV1-7, to assess the role of epsilonPKC in the modulation of L-type Ca(2+) current (I(Ca,L)). Whole cell I(Ca,L) was recorded using patch-clamp technique from rat ventricular myocytes. Intracellular application of epsilonV1-7 (0.1 microM) resulted in a significant inhibition of I(Ca,L) by 27.9 +/- 2.2% (P < 0.01, n = 8) in a voltage-independent manner. The inhibitory effect of epsilonV1-7 on I(Ca,L) was completely prevented by the peptide inhibitor of epsilonPKC, epsilonV1-2 [5.2 +/- 1.7%, not significant (NS), n = 5] but not by the peptide inhibitors of cPKC, alphaC2-4 (31.3 +/- 2.9%, P < 0.01, n = 6) or betaC2-2 plus betaC2-4 (26.1 +/- 2.9%, P < 0.01, n = 5). In addition, the use of a general inhibitor (GF-109203X, 10 microM) of the catalytic activity of PKC also prevented the inhibitory effect of epsilonV1-7 on I(Ca,L) (7.5 +/- 2.1%, NS, n = 6). In conclusion, we show that selective activation of epsilonPKC inhibits the L-type Ca channel in the heart.  相似文献   

10.
In this study we tested the hypothesis that ventricular homeostasis of L-type Ca(2+) current (I(Ca,L)) minimally involves regulation of the main pore-forming alpha-subunit (Ca(V)1.2) and auxiliary proteins that serve as positive or negative regulators of I(Ca,L). We treated animals for 24 h with verapamil (Ver, 3.6 mg.kg(-1).day(-1)), isoproterenol (Iso, 30 mg.kg(-1).day(-1)), or Iso + Ver via osmotic minipumps. To test for alterations of Ca(2+) channel complex components we performed real-time PCR and Western blot analysis on ventricle. In addition, cardiac myocytes (CMs) were dispersed and current was recorded in the whole cell configuration to evaluate I(Ca,L). Surprisingly, 24- to 48-h Ver increased Ca(V)1.2 mRNA and protein and I(Ca,L) current (Ver 11 +/- 1pA/pF vs. control 7 +/- 0.5pA/pF; P < 0.01). I(Ca,L) from CMs in Ver mice showed no change in whole cell capacitance. To examine the in vivo effects of a physiologically relevant Ca(2+) channel agonist, we treated mice with Iso. Twenty-four-hour Iso infusion increased heart rate; Ca(V)1.2- and Ca(V)beta(2) mRNA levels were constant, but the Ca(2+) channel subunit mRNA Rem was increased twofold. Cells isolated from 24-h Iso hearts showed no change in basal I(Ca,L) density and diminished responsiveness to acute 1 muM Iso. To further examine the homeostatic regulation of the Ca(2+) channel, we treated animals for 24 h with Iso + Ver. The influence of Iso + Ver was similar that of to Iso alone on Ca(2+) channel mRNAs and I(Ca,L), with the exception that it prevented the increase in Rem seen with Iso treatment. Long-term Ca(2+) channel blockade induces an increase of Ca(V)1.2 mRNA and protein and significantly increases I(Ca,L).  相似文献   

11.
Using the whole-cell patch-clamp technique, we have studied the properties of alpha(1E) Ca(2+) channel transfected in cardiac myocytes. We have also investigated the effect of foreign gene expression on the intrinsic L-type current (I(Ca,L)). Expression of green fluorescent protein significantly decreased the I(Ca,L). By contrast, expression of alpha(1E) with beta(2b) and alpha(2)/delta significantly increased the total Ca(2+) current, and in these cells a Ca(2+) antagonist, PN-200-110 (PN), only partially blocked the current. The remaining PN-resistant current was abolished by the application of a low concentration of Ni(2+) and was little affected by changing the charge carrier from Ca(2+) to Ba(2+) or by beta-adrenergic stimulation. On the basis of its voltage range for activation, this channel was classified as a high-voltage activated channel. Thus the expression of alpha(1E) did not generate T-like current in cardiac myocytes. On the other hand, expression of alpha(1E) decreased I(Ca,L) and slowed the I(Ca,L) inactivation. This inactivation slowing was attenuated by the beta(2b) coexpression, suggesting that the alpha(1E) may slow the inactivation of I(Ca,L) by scrambling with alpha(1C) for intrinsic auxiliary beta.  相似文献   

12.
The present study was designed to observe the properties of swelling-activated chloride channel (ICl.swell) in mouse cardiac myocytes using patch clamp techniques. In whole-cell recordings, hypotonic solution activated a chloride current that exhibited outward rectification, weak voltage-dependent inactivation, and anion selectivity with permeability sequence of I- > Br- > Cl-. The current was sensitive to Cl- channel blockers tamoxifen, NPPB and DIDS. In single-channel recordings, cell swelling activated a single channel current which showed outward rectification with open probability of 0.76 +/- 0.08 and conductance of 38.1 +/- 2.5 pS at +100 mV under [Cl-] symmetrical condition. I-V relation revealed the reversal potential as expected for a Cl(-)-selective channel. These results suggested that in mouse cardiac myocytes, swelling-activated, outward rectifying chloride channel with a single channel conductance of 38.1 +/- 2.5 pS (at +100 mV under [Cl-] symmetrical condition) underlies the volume regulatory Cl- channel.  相似文献   

13.
DMA增加正常大鼠心肌细胞钙瞬变和收缩   总被引:13,自引:5,他引:8  
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2002,54(3):219-224
实验观察了钠氢交换或钠钙交换抑制剂 5 (N ,N 二甲基 )氨氯吡咪 (DMA)对正常和心肌肥厚大鼠分离心室肌细胞钙瞬变和细胞收缩的影响。通过负载荧光染料Fura 2 /Am ,应用离子影像分析系统 (IonImagingSystem)同步测定离体大鼠心肌细胞钙瞬变和细胞长度。结果表明 :DMA 10 μmol/L分别使钙瞬变和细胞缩短从对照组的 2 0 9.6 0± 5 4.96和 3.0 7± 0 .97μm增加到 2 38.5 0± 80 .41和 4.0 7± 1.0 2 μm (P <0 .0 5 ,n =7)。应用特异性反向钠钙交换阻断剂KB R7943可完全阻断DMA的激动作用。DMA还可使尼卡地平抑制L 型钙通道后的钙瞬变和细胞收缩增加。在肥厚心肌细胞 ,DMA表现出相同的药理作用 ,但对钙瞬变和细胞缩短的刺激作用更强。结果表明 :DMA可通过反向钠钙交换途径增加正常和肥厚大鼠心肌细胞钙瞬变和细胞收缩 ,且对肥厚心肌细胞的影响比对正常心肌细胞大。  相似文献   

14.
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca(2+)-sensitive dye Fura-2 elicited Ca(2+) transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca(2+) currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca(2+) currents originating from L-type Ca(2+) channels (I(Ca)). The density of I(Ca) was 3.2 +/- 0.5 pA/pF, which led to an overall total Ca(2+) influx of 64.1 +/- 9.3 microM/l. NCX activity was measured as the Ni(+)-sensitive current at two concentrations of intracellular Na(+) (7 and 14 mM). Total Ca(2+) influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 +/- 7.7 micromol/l and 26.7 +/- 3.2 micromol/l at 14 and 7 mM intracellular Na(+), respectively. In the absence of the SR and L-type Ca(2+) channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca(2+) transport, and most of the Ca(2+) used for contraction originates from the L-type Ca(2+) channel.  相似文献   

15.
Muscle LIM protein (MLP) may serve as a scaffold protein on the actin-based cytoskeleton, and mice deficient in this protein (MLPKO) have been recently reported to develop dilated cardiomyopathy. To determine the causes of depressed contractility in this model, we measured intracellular Ca2+ concentration ([Ca2+]i) transients (fluo 3), cell shortening, L-type Ca2+ channel current (I(Ca,L)), Na/Ca exchanger current (I(Na/Ca)), and sarcoplasmic reticulum (SR) Ca content in left ventricular MLPKO myocytes. I(Ca,L)-voltage relationships, I(Na/Ca) density, and membrane capacitance did not differ between wild-type (WT) and MLPKO myocytes. The peak systolic [Ca2+]i was significantly increased in MLPKO myocytes (603 +/- 54 vs. 349 +/- 18 nM in WT myocytes). The decline of [Ca2+]i transients was accelerated in MLPKO myocytes, and SR Ca2+ content was increased by 21%, indicating that SR Ca2+-ATPase function is normal or enhanced in MLPKO myocytes. Confocal imaging of actin filaments stained with tetramethylrhodamine isothiocyanate-labeled phalloidin showed disorganization of myofibrils and abnormal alignment of Z bands, and fractional shortening was significantly diminished in MLPKO myocytes compared with that in WT myocytes at comparable peak [Ca2+]i. Thus a reduced [Ca2+]-induced shortening may be involved in the pathogenesis of myocardial dysfunction in this genetic model of heart failure.  相似文献   

16.
Modulation of L-type Ca(2+) current (I(Ca,L)) by H(+) ions in cardiac myocytes is controversial, with widely discrepant responses reported. The pH sensitivity of I(Ca,L) was investigated (whole cell voltage clamp) while measuring intracellular Ca(2+) (Ca(2+)(i)) or pH(i) (epifluorescence microscopy) in rabbit and guinea pig ventricular myocytes. Selectively reducing extracellular or intracellular pH (pH(o) 6.5 and pH(i) 6.7) had opposite effects on I(Ca,L) gating, shifting the steady-state activation and inactivation curves to the right and left, respectively, along the voltage axis. At low pH(o), this decreased I(Ca,L), whereas at low pH(i), it increased I(Ca,L) at clamp potentials negative to 0 mV, although the current decreased at more positive potentials. When Ca(2+)(i) was buffered with BAPTA, the stimulatory effect of low pH(i) was even more marked, with essentially no inhibition. We conclude that extracellular H(+) ions inhibit whereas intracellular H(+) ions can stimulate I(Ca,L). Low pH(i) and pH(o) effects on I(Ca,L) were additive, tending to cancel when appropriately combined. They persisted after inhibition of calmodulin kinase II (with KN-93). Effects are consistent with H(+) ion screening of fixed negative charge at the sarcolemma, with additional channel block by H(+)(o) and Ca(2+)(i). Action potential duration (APD) was also strongly H(+) sensitive, being shortened by low pH(o), but lengthened by low pH(i), caused mainly by H(+)-induced changes in late Ca(2+) entry through the L-type Ca(2+) channel. Kinetic analyses of pH-sensitive channel gating, when combined with whole cell modeling, successfully predicted the APD changes, plus many of the accompanying changes in Ca(2+) signaling. We conclude that the pH(i)-versus-pH(o) control of I(Ca,L) will exert a major influence on electrical and Ca(2+)-dependent signaling during acid-base disturbances in the heart.  相似文献   

17.
The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude.  相似文献   

18.
MCI-154对大鼠心肌细胞的变力作用   总被引:1,自引:1,他引:0  
Chen HZ  Cui XL  Zhao HC  Zhao LY  Lu JY  Wu BW 《生理学报》2004,56(3):301-305
钙增敏剂具有正性肌力作用,同时不增加细胞内钙浓度,因此可避免导致心律失常和最终心肌细胞死亡的钙超载。然而大部分钙增敏剂对心肌舒张功能有损害作用。MCI-154是一种钙增敏剂,但不损害舒张功能。为阐明其变力作用机制,我们应用离子成像技术研究了MCI-154对分离的单个大鼠心室肌细胞钙瞬变和收缩的影响,利用膜片钳技术观察了MCI-154对大鼠心室肌细胞L-型钙电流和Na^ /Ca^2 交换电流的影响。结果表明:(1)MCI-154在1μmol/L至100μmol/L的浓度范围内对L-型钙电流(ICa-L)无直接影响:(2)MCI-154在轻微增加钙瞬变幅度和缩短心肌钙瞬变TR50和TR90的情况下,呈剂量依赖性地增加大鼠心室肌细胞的缩短;(3)MCI-154剂量依赖性地增加正常大鼠心室肌细胞的Na^ /Ca^2 交换电流。这些结果提示:MCI-154不仅剂量依赖性地发挥了正性变力作用,对舒张功能也没有损害作用,明显不同于其它钙增敏剂,而且还轻微改善了大鼠心室肌细胞的舒张。其对内向Na^ /Ca^2 交换电流的激动作用会加快钙内流,导致TR50和TR90的缩短,提示MCI-154是通过正向Na^ /Ca^2 交换改善舒张功能的。  相似文献   

19.
There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The objective of the study was to investigate ventricular myocyte shortening, intracellular Ca(2+) signalling and expression of genes encoding cardiac muscle proteins in the aged Zucker diabetic fatty (ZDF) rat. There was a fourfold elevation in non-fasting blood glucose in ZDF rats (478.43 ± 29.22 mg/dl) compared to controls (108.22 ± 2.52 mg/dl). Amplitude of shortening, time to peak (TPK) and time to half (THALF) relaxation of shortening were unaltered in ZDF myocytes compared to age-matched controls. Amplitude and THALF decay of the Ca(2+) transient were unaltered; however, TPK Ca(2+) transient was prolonged in ZDF myocytes (70.0 ± 3.2 ms) compared to controls (58.4 ± 2.3 ms). Amplitude of the L-type Ca(2+) current was reduced across a wide range of test potentials (-30 to +40 mV) in ZDF myocytes compared to controls. Sarcoplasmic reticulum Ca(2+) content was unaltered in ZDF myocytes compared to controls. Expression of genes encoding cardiac muscle proteins, membrane Ca(2+) channels, and cell membrane ion transport and intracellular Ca(2+) transport proteins were variously altered. Myh6, Tnnt2, Cacna2d3, Slc9a1, and Atp2a2 were downregulated while Myl2, Cacna1g, Cacna1h, and Atp2a1 were upregulated in ZDF ventricle compared to controls. The results of this study have demonstrated that preserved ventricular myocyte shortening is associated with altered mechanisms of Ca(2+) transport and a changing pattern of genes encoding a variety of Ca(2+) signalling and cardiac muscle proteins in aged ZDF rat.  相似文献   

20.
The alpha(1c) subunit of the cardiac L-type Ca(2+) channel, which contains the channel pore, voltage- and Ca(2+)-dependent gating structures, and drug binding sites, has been well studied in heterologous expression systems, but many aspects of L-type Ca(2+) channel behavior in intact cardiomyocytes remain poorly characterized. Here, we develop adenoviral constructs with E1, E3 and fiber gene deletions, to allow incorporation of full-length alpha(1c) gene cassettes into the adenovirus backbone. Wild-type (alpha(1c-wt)) and mutant (alpha(1c-D-)) Ca(2+) channel adenoviruses were constructed. The alpha(1c-D-) contained four point substitutions at amino acid residues known to be critical for dihydropyridine binding. Both alpha(1c-wt) and alpha(1c-D-) expressed robustly in A549 cells (peak L-type Ca(2+) current (I(CaL)) at 0 mV: alpha(1c-wt) -9.94+/-1.00pA/pF, n=9; alpha(1c-D-) -10.30pA/pF, n=12). I(CaL) carried by alpha(1c-D-) was markedly less sensitive to nitrendipine (IC(50) 17.1 microM) than alpha(1c-wt) (IC(50) 88 nM); a feature exploited to discriminate between engineered and native currents in transduced guinea-pig myocytes. 10 microM nitrendipine blocked only 51+/-5% (n=9) of I(CaL) in alpha(1c-D-)-expressing myocytes, in comparison to 86+/-8% (n=9) of I(CaL) in control myocytes. Moreover, in 20 microM nitrendipine, calcium transients could still be evoked in alpha(1c-D-)-transduced cells, but were largely blocked in control myocytes, indicating that the engineered channels were coupled to sarcoplasmic reticular Ca(2+) release. These alpha(1c) adenoviruses provide an unprecedented tool for structure-function studies of cardiac excitation-contraction coupling and L-type Ca(2+) channel regulation in the native myocyte background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号