首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The p38 mitogen activated protein kinase (p38MAPK) pathway is an important signaling cascade involved in cell growth, differentiation and apoptosis. High glucose activates p38MAPK pathway in different cells, including osteoblasts. In the present study, role of p38MAPK in high glucose induced osteoblast apoptosis and potential of RNA interference (RNAi) targeting p38MAPK as a therapy strategy have been reported. Lentiviral-mediated RNAi effectively reduced p38MAPK and p-p38MAPK expressions in osteoblastic cell line (MC3T3-E1) following high glucose (22 mM) induction. Inhibition of p38MAPK activity significantly suppressed high glucose induced apoptosis of MC3T3-E1 cell and was confirmed by flow cytometry and ultra-structural examination by transmission electronic microscope. Inhibition of p38MAPK also significantly attenuates caspase-3 and bax protein expressions, but increased significantly bcl-2 expression as determined by Western blot analysis. The results suggested that p38MAPK mediates high glucose induced osteoblast apoptosis, partly through modulating the expressions of caspase-3, bax and bcl-2. Inhibition of p38MAPK with lentiviral-mediated RNAi or its specific inhibitor provides a new strategy to treat high glucose induced osteoblast apoptosis.  相似文献   

5.
Kim do Y  Jung MS  Park YG  Yuan HD  Quan HY  Chung SH 《BMB reports》2011,44(10):659-664
As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).  相似文献   

6.
Z. Dai  Y. Li  L.D. Quarles  T. Song  W. Pan  H. Zhou  Z. Xiao   《Phytomedicine》2007,14(12):806-814
In the present study, we investigated the in vitro effect of resveratrol (RSVL), a polyphenolic phytoestrogen, on cell proliferation and osteoblastic maturation in human bone marrow-derived mesenchymal stem cell (HBMSC) cultures. RSVL (10−8–10−5 M) increased cell growth dose-dependently, as measured by [3H]-thymidine incorporation, and stimulated osteoblastic maturation as assessed by alkaline phosphatase (ALP) activity, calcium deposition into the extracellular matrix, and the expression of osteoblastic markers such as RUNX2/CBFA1, Osterix and Osteocalcin in HBMSCs cell cultures. Further studies found that RSVL (10−6 M) resulted in a rapid activation of both extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) signaling in HBMSCs cultures. The effects of RSVL were mimicked by 17β-estrodial (10−8 M) and were abolished by estrogen receptor (ER) antagonist ICI182780. An ERK1/2 pathway inhibitor, PD98059, significantly attenuated RSVL-induced ERK1/2 phosphorylation, consistent with the reduction of cell proliferation and osteoblastic differentiation as well as expression of osteoblastic markers. In contrast, SB203580, a p38 MAPK pathway blocker, blocked RSVL-induced p38 phosphorylation, but resulted in an increase of cell proliferation and a more osteoblastic maturation. These data suggest that RSVL stimulates HBMSCs proliferation and osteoblastic differentiation through an ER-dependent mechanism and coupling to ERK1/2 activation.  相似文献   

7.
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling.  相似文献   

8.
Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway.  相似文献   

9.
10.
11.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

12.
Prostaglandins are now recognized to be important regulators for both bone formation and resorption. Among them, prostaglandin E(1) (PGE(1)) has been reported to stimulate cAMP accumulation and to induce alkaline phosphatase (ALP) activity, a marker of differentiation, in osteoblast-like cells. Recently, we have shown that p38 mitogen-activated protein (MAP) kinase pathway regulates ALP activity in response to activation of Gi protein-coupled receptors in mouse osteoblast-like MC3T3-E1 cells (Suzuki et al., Endocrinology 140 (1999) 3177). In the present study, we investigated whether p38 MAP kinase is involved in ALP activation by PGE(1) in MC3T3-E1 osteoblast-like cells. PGE(1) dose-dependently enhanced ALP activities in the concentration range between 1 nM and 1 microM in MC3T3-E1 cells. SB203580, a specific inhibitor of p38 MAP kinase, blocked the increase in ALP activity induced by PGE(1). Further analysis with western blotting suggested that PGE(1) induced an increase in tyrosine (Tyr) phosphorylation of p38 MAP kinase. Both Bt(2)cAMP, a permeable analogue of cAMP, and forskolin, which directly activates adenylate cyclase, also induced an increase in Tyr phosphorylation of p38 MAP kinase. H-89, a potent inhibitor of protein kinase A (PKA), significantly suppressed PGE(1)-induced Tyr phosphorylation of p38 MAP kinase. The results of this study suggest that PGE(1) stimulates p38 MAP kinase through the activation of PKA, resulting in the enhancement of ALP activity.  相似文献   

13.
BackgroundImpaired bone formation is one of the reasons behind osteoporosis. Alterations in the patterns of mesenchymal stromal cell differentiation towards adipocytes instead of osteoblasts contribute to osteoporosis progression. Natural anti-osteoporotic agents are effective and safe alternatives for osteoporosis treatment.PurposeIn this context, 3,5-dicaffeoyl‑epi-quinic acid (DCEQA) which is a derivative of chlorogenic acid with reported bioactivities was studied for its osteogenic differentiation enhancing potential in vitro.MethodsAnti-osteoporotic effects of DCEQA were investigated in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) which were induced to differentiate into osteoblasts or adipocytes with or without DCEQA treatment. Changes in the osteogenic and adipogenic markers such as ALP activity and lipid accumulation, respectively, were observed along with differentiation-specific activation of mitogen activated protein kinase (MAPK) pathways.ResultsAt 10 μM concentration, DCEQA increased the proliferation of bone marrow-derived human mesenchymal stromal cells (hBM-MSCs) during osteoblast differentiation. The expression of osteogenic markers ALP, osteocalcin, Runx2, BMP2 and Wnt 10a was upregulated by DCEQA treatment. The ALP activity and extracellular mineralization were also increased. DCEQA elevated the phosphorylation levels of p38 and JNK MAPKs as well as the activation of β-catenin and Smad1/5. DCEQA suppressed the lipid accumulation and downregulated expression of adipogenic markers PPARγ, C/EBPα and SREBP1c in adipo-induced hBM-MSCs. DCEQA also decreased the phosphorylation of p38 and ERK MAPKs and stimulated the activation of AMPK in hBM-MSC adipocytes.ConclusionDCEQA was suggested to enhance osteoblast differentiation via stimulating Wnt/BMP signaling. The adipocyte differentiation inhibitory effect of DCEQA was suggested to arise from its ability to increase AMPK phosphorylation. Overall, DCEQA was shown to possess osteogenesis enhancing and adipogenesis inhibitory properties which might facilitate its use against osteoporotic conditions.  相似文献   

14.
Yuan LQ  Zhu JH  Wang HW  Liang QH  Xie H  Wu XP  Zhou H  Cui RR  Sheng ZF  Zhou HD  Zhu X  Liu GY  Liu YS  Liao EY 《PloS one》2011,6(12):e29037
Several reports have shown that circulating insulin level is positively correlated with arterial calcification; however, the relationship between insulin and arterial calcification remains controversial and the mechanism involved is still unclear. We used calcifying vascular smooth muscle cells (CVSMCs), a specific subpopulation of vascular smooth muscle cells that could spontaneously express osteoblastic phenotype genes and form calcification nodules, to investigate the effect of insulin on osteoblastic differentiation of CVSMCs and the cell signals involved. Our experiments demonstrated that insulin could promote alkaline phosphatase (ALP) activity, osteocalcin expression and the formation of mineralized nodules in CVSMCs. Suppression of receptor activator of nuclear factor κB ligand (RANKL) with small interfering RNA (siRNA) abolished the insulin-induced ALP activity. Insulin induced the activation of extracellular signal-regulated kinase (ERK)1/2, mitogen-activated protein kinase (MAPK) and RAC-alpha serine/threonine-protein kinase (Akt). Furthermore, pretreatment of human osteoblasts with the ERK1/2 inhibitor PD98059, but not the phosphoinositide 3-kinase (PI3K) inhibitor, LY294002, or the Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO), abolished the insulin-induced RANKL secretion and blocked the promoting effect of insulin on ALP activities of CVSMCs. Recombinant RANKL protein recovered the ALP activities decreased by RANKL siRNA in insulin-stimulated CVSMCs. These data demonstrated that insulin could promote osteoblastic differentiation of CVSMCs by increased RANKL expression through ERK1/2 activation, but not PI3K/Akt activation.  相似文献   

15.
Numerous studies have shown that long-chain polyunsaturated fatty acids can kill cancer cells in vitro as well as in vivo, while normal cells remain unaffected. Unfortunately, the cellular and molecular mechanisms responsible for this phenomenon are still poorly understood. The aim of this study was to investigate the potential chemopreventative/antiproliferative potential of docosahexaenoic acid (DHA) in an adenocarcinoma cell line (CaCo2 cells) and to evaluate the signalling pathways modulated by it. DHA (5-50 microM) significantly inhibited cell viability in a dose-dependent manner in CaCo2 cells, while the viability of normal colon cells (NCM460 cells) was not compromised. DHA also induced apoptosis in CaCo2 cells, as indicated by increases in caspase-3 activation and poly-ADP-ribose polymerase cleavage. Signalling proteins, which include extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), Akt and p53 were analysed by Western blotting using phosphospecific and total antibodies. The protein inhibitors wortmannin (phosphoinositide 3 kinase inhibitor), PD 98059 (MEK inhibitor) and SB 203580 (p38 inhibitor) as well as silencing RNA [small interfering RNA (siRNA)] of the p38 MAPK protein, were used to investigate cross-talk between signalling pathways. DHA supplementation significantly suppressed Akt phosphorylation, which also correlated with decreased cell viability and increased apoptosis in CaCo2 cells. Furthermore, siRNA experiments suggested a possible role for p38 MAPK in the phosphorylation of p53 at Ser15, a site which is associated with DNA damage. DHA might thus exert its beneficial effects by means of increased apoptosis and suppression of the important survival-related kinase, Akt.  相似文献   

16.
Lipid peroxidation plays a major role in vascular dysfunction and age-related cardiovascular diseases. A major product of lipid peroxidation, tert-butyl hydroperoxide (t-BHP), has been reported to modulate vascular reactivity and cellular signaling. To better understand vascular abnormality, we set out to delineate the activation mechanism of nuclear factor kappa B (NF-kappaB) by t-BHP and the regulation of MAPK in endothelial cells. The results showed that t-BHP induces NF-kappaB activation by an inhibitor of kappaB (IkappaB) phosphorylation through IkappaB kinase (IKK) activation. Our data from this t-BHP study also showed increased p38 MAP kinase and ERK activity; however, interestingly, t-BHP showed no influence on JNK. Pretreatment with the p38 MAP kinase inhibitor, SB203580 and the ERK1/2 inhibitor, PD98059, prevented t-BHP-induced increases in p65 translocation, NF-kappaB luciferase activity, and phospho-IKKalpha/beta. Data suggested that t-BHP induces NF-kappaB activation through the IKK pathway, which involves p38 MAPK and ERK activation. This study illustrates a role of t-BHP in NF-kappaB activation and MAPK related-signaling pathways. The t-BHP-induced activation of NF-kappaB and MAPK could be a major player in vascular dysfunctions, as seen in oxidative stressed responses and the vascular inflammatory process.  相似文献   

17.
18.
The cellular effects of eleven compounds including chalcone glycosides isolated from Brassica rapa L. ‘hidabeni’ and their synthetic derivatives were studied in rat pheochromocytoma PC12 cells. Of the compounds tested, 4′-O-β-d-glucopyranosyl-3′,4-dimethoxychalcone (A2) significantly increased the levels of the phosphorylated forms of extracellular signal-regulated kinases 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38MAPK), and stress-activated protein kinases/Jun amino-terminal kinases (JNK/SAPK), but it did not affect Akt. Nerve growth factor (NGF), a well-known neurotrophic factor, increased the levels of phosphorylated ERK1/2, JNK/SAPK, and Akt but not p38MAPK, which may mediate marked neurite outgrowth. Signals evoked by A2 shared common characteristics with those induced by NGF; therefore, we evaluated the neuritogenic activity of A2 and found it induced only weak neurite outgrowth. However, this effect was enhanced by pre-treatment with a p38MAPK inhibitor, suggesting that the phosphorylation of p38MAPK down-regulated neurite outgrowth. From the results of this study, it was found that A2 in combination with a p38MAPK inhibitor can induce NGF-like effects. Hence, a combination of chalcone glycosides containing A2 and a p38MAPK inhibitor increases the likelihood that chalcone glycosides could be put to practical use in the form of drugs or alternative medicines to maintain neural health.  相似文献   

19.
Je JH  Lee JY  Jung KJ  Sung B  Go EK  Yu BP  Chung HY 《FEBS letters》2004,566(1-3):183-189
4-Hydroxyhexenal (HHE) is known to affect redox balance during aging, included are vascular dysfunctions. To better understand vascular abnormality through the molecular alterations resulting from HHE accumulation in aging processes, we set out to determine whether up-regulation of mitogen-activated protein kinase (MAPK) by HHE is mediated through nuclear factor kappa B (NF-kappaB) activation in endothelial cells. HHE induced NF-kappaB activation by inhibitor of kappaB (IkappaB) phosphorylation via the IkappaB kinase (IKK)/NF-kappaB inducing kinase (NIK) pathway. HHE increased the activity of p38 MAPK and extracellular signal regulated kinase (ERK), but not c-jun NH(2)-terminal kinase, indicating that p38 MAPK and ERK are closely involved in HHE-induced NF-kappaB transactivation. Pretreatment with ERK inhibitor PD98059, and p38 MAPK inhibitor SB203580, attenuated the induction of p65 translocation, IkappaB phosphorylation, and NF-kappaB luciferase activity. These findings strongly suggest that HHE induces NF-kappaB activation through IKK/NIK pathway and/or p38 MAPK and ERK activation associated with oxidative stress in endothelial cells.  相似文献   

20.
Osteosarcoma is the most common primary malignant bone tumor, accounting for approximately 20% of all primary sarcomas in bone. Although treatment modalities have been improved over the past decades, it is still a tumor with a high mortality rate in children and young adults. Based on histological considerations, osteosarcoma arises from impaired differentiation of these immature cells into more mature types and that correction of this impairment may reduce malignancy and increase the efficiency of chemotherapy. The purpose of this study was to determine the effect of specific inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK) and p38 on the differentiation of human osteosarcoma cell line SaOS-2 cells. We found that PD98059, a specific inhibitor of MEK, inhibited the serum-stimulated proliferation of SaOS-2 cells; whereas SB203580, a specific inhibitor of p38 MAPK, had little effect on it. SB203580 suppressed ALPase activity, gene expression of type I collagen, and expression of ALP and BMP-2 mRNAs; whereas PD98059 upregulated them dose dependently. In addition, immunoblot and immunostaining analysis revealed that phosphorylation of ERK was increased by treatment with SB203580; whereas PD98059 increased the phosphorylation of p38, which implies a seesaw-like balance between ERK and p38 phosphorylation. We suggest that osteosarcoma cell differentiation is regulated by the balance between the activities of the ERK and p38 pathways and that the MEK/ERK pathway negatively regulates osteosarcoma cell differentiation, whereas the p38 pathway does so positively. MEK inhibitor may thus be a good candidate for altering the expression of the osteosarcoma malignant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号