首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the CBA mouse testis about 10% of the stem cell population is highly resistant to neutron irradiation (D0, 0.75 Gy). Following a dose of 1.50 Gy these cells rapidly increase their sensitivity towards a second neutron dose and progress fairly synchronously through their first post-irradiation cell cycle. From experiments in which neutron irradiation was combined with hydroxyurea it appeared that in this cycle the S-phase is less radiosensitive (D0, 0.43 Gy) than the other phases of the cell cycle (D0, 0.25 Gy). From experiments in which hydroxyurea was injected twice after irradiation the speed of inflow of cells in S and the duration of S and the cell cycle could be calculated. Between 32 and 36 hr after irradiation cells start to enter the S-phase at a speed of 30% of the population every 12 hr. At 60 hr 50% of the population has already passed the S-phase while 30% is still in S. The data point to a cell cycle time of about 36 hr, while the S-phase lasts 12 hr at the most.  相似文献   

2.
Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to the next generation. These cells can be cultured for extended periods in the presence of serum and feeder cells. However, little is known about factors that regulate self-renewal division of spermatogonial stem cells. In this investigation we examined the possibility of establishing culture systems for spermatogonial stem cells that lack serum or a feeder cell layer. Spermatogonial stem cells could expand in serum-free conditions on mouse embryonic fibroblasts (MEFs), or were successfully cultivated without feeder cells on a laminin-coated plate. However, they could not expand when both serum and feeder cells were absent. Although the cells cultured on laminin differed phenotypically from those on feeder cells, they grew exponentially for at least 6 mo, and produced normal, fertile progeny following transplantation into infertile mouse testis. This culture system will provide a new opportunity for understanding the regulatory mechanism that governs spermatogonial stem cells.  相似文献   

3.
Defining the spermatogonial stem cell   总被引:11,自引:0,他引:11  
  相似文献   

4.
Sertoli cells dictate spermatogonial stem cell niches in the mouse testis   总被引:1,自引:0,他引:1  
Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.  相似文献   

5.
小鼠精原干细胞冻存后体外培养   总被引:1,自引:0,他引:1  
目的:研究冷冻后精原干细胞体外培养时的生物学行为.方法:体外培养冻存后的6日龄小鼠生精上皮细胞,并利用碱性磷酸酶活性及细胞形态,检测其中的精原干细胞.结果:当有BRL饲养层时,冻存后的精原细胞在贴壁、存活及增殖等生物学行为方面与新分离的精原细胞均无明显不同.培养25~30 d,培养体系中仍保留有少量精原干细胞及其最初几代分化细胞.结论:冷冻保存后的精原干细胞能在BRL细胞饲养层上正常地贴壁、生长和分裂.  相似文献   

6.
Primate spermatogonial stem cells colonize mouse testes   总被引:17,自引:0,他引:17  
In mice, transplantation of spermatogonial stem cells from a fertile male to the seminiferous tubules of an infertile recipient male results in progeny with donor-derived haplotype. Attempts to extend this approach by transplanting human testis cells to mice have led to conflicting claims that no donor germ cells persisted or that human spermatozoa were produced in the recipient. To examine this issue we used the baboon, a primate in which testis cell populations of several ages could be obtained for transplantation, and demonstrate that donor spermatogonial stem cells readily establish germ cell colonies in recipient mice, which exist for periods of at least 6 mo. However, differentiation of germ cells toward the lumen of the tubule and production of spermatozoa did not occur. The presence of baboon spermatogonial stem cells and undifferentiated spermatogonia in mouse seminiferous tubules for long periods after transplantation indicates that antigens, growth factors, and signaling molecules that are necessary for interaction of these cells and the testis environment have been preserved for 100 million years of evolutionary separation. Because germ cell differentiation and spermatogenesis did not occur, the molecules necessary for this process appear to have undergone greater divergence between baboon and mouse.  相似文献   

7.
Cell fate determination between self-renewal or differentiation of spermatogonial stem cells (SSCs) in the testis is precisely regulated to maintain normal spermatogenesis. However, the mechanisms underlying the process remain elusive. To address the problem, we developed a model SSC culture system, first, by establishing techniques to obtain enriched populations of stem cells, and second, by establishing a serum-free culture medium. Flow cytometric cell sorting and the SSC transplantation assay demonstrated that Thy-1 is a unique surface marker of SSCs in neonatal, pup, and adult testes of the mouse. Although the surface phenotype of SSCs is major histocompatibility complex class I(-) Thy-1(+) alpha 6-integrin(+) alpha v-integrin(-/dim) throughout postnatal life, the most enriched population of SSCs was obtained from cryptorchid adult testes by cell-sorting techniques based on Thy-1 expression. This enriched population of SSCs was used to develop a culture system that consisted of serum-free defined medium and STO (SIM mouse embryo-derived thioguanine and ouabain resistant) feeders, which routinely maintained stem cell activity for 1 wk. Combining the culture system and the transplantation assay provided a mechanism to study the effect of single growth factors. A negative effect was demonstrated for several concentrations of basic fibroblast growth factor and leukemia inhibitory factor, whereas glial cell line-derived neurotrophic factor and stem cell factor appeared to have a positive effect on stem cell maintenance. The stem cell enrichment strategies and the culture methods described provide a reproducible and powerful assay system to establish the effect of various environmental factors on SSC survival and replication in vitro.  相似文献   

8.
There is a need for a deeper understanding of the biochemical events affecting embryonic stem (ES) cell culture by analyzing the expansion of mouse ES cells in terms of both cell growth and metabolic kinetics. The influence of the initial cell density on cell expansion was assessed. Concomitantly, the biochemical profile of the culture was evaluated, which allowed measuring the consumption of important substrates, such as glucose and glutamine, and the production of metabolic byproducts, like lactate. The results suggest a more efficient cell metabolism in serum-free conditions and a preferential use of glutaminolysis as an energy source during cell expansion at low seeding densities. This work contributes to the development of fully-controlled bioprocesses to produce relevant numbers of ES cells for cell therapies and high-throughput drug screening.  相似文献   

9.
10.
Although the in vitro fertilisation index is a parameter commonly employed to investigate sperm functional activity, little attention has been given to the occurrence of parthenogenesis. The purpose of this study was to study at 6 h or 22 h incubation: (a) the cleavage-related events that occur in in vitro incubated mouse oocytes, in the absence (parthenogenesis) or presence of homologous spermatozoa; (b) the effect of mineral oil, commonly used in in vitro fertilisation assays; (c) the effect of piroxicam, a prostaglandin synthesis inhibitor, on the parthenogenetic rate; and (d) the influence on parthenogenesis of spontaneous loss of the cumulus oophorus coat during incubation. Under the experimental conditions employed, there was parthenogenetic activation and activation due to fertilisation. Both increased in a time-dependent manner. The mineral oil enhanced the parthenogenetic rate at 22 h incubation. However, it did not have any effect when the oocytes were inseminated. Since we can not discriminate how much of this activation was due to fertilisation and how much to parthenogenesis we must be very careful with this comparison. Piroxicam 10(-8) M did not show any effect on the mouse oocyte parthenogenetic rate at neither 6 h or 22 h incubation. Our results suggest that oocyte susceptibility to spontaneous parthenogenetic activation may be modified by the presence of the cumulus and corona radiata cells. In conclusion, we consider that further rigorous studies on these influences are necessary in order to confer more reliability on the results.  相似文献   

11.
The radioprotective effects of misoprostol, a synthetic stable analogue of prostaglandin E1, on spermatogonial stem cells of C3H/HeH x 101/F1 hybrid mice (3H1) were analysed by establishing dose--response relationships for stem cell killing by X-rays in mice that were pretreated with misoprostol. Spermatogonial stem cell killing was studied through determination of the percentage of tubular cross-sections showing repopulation at 10 days after irradiation. In control mice, the D0 values ranged between 1.7 and 3.6 Gy, dependent on the stage of the cycle of the seminiferous epithelium the cells were in. As found previously, proliferating spermatogonial stem cells were much more radioresistant than quiescent stem cells. In the misoprostol-pretreated animals the spermatogonial stem cells were more radioresistant, the D0 values ranging from 3.6 to 5.0 Gy. Both proliferating and quiescent spermatogonial stem cells were protected by misoprostol. As the dose--response curves in control and misoprostol-pretreated mice showed about the same extrapolation number to the y-axis it was concluded that the misoprostol pretreatment did not alter the kinetics of the repopulation process.  相似文献   

12.
Spermatogonial stem cells have unique properties to self-renew and support spermatogenesis throughout their lifespan. Although glial cell line-derived neurotrophic factor (GDNF) has recently been identified as a self-renewal factor for spermatogonial stem cells, the molecular mechanism of spermatogonial stem cell self-renewal remains unclear. In the present study, we assessed the role of the phosphoinositide-3 kinase (PI3K)-Akt pathway using a germline stem (GS) cell culture system that allows in vitro expansion of spermatogonial stem cells. Akt was rapidly phosphorylated when GDNF was added to the GS cell culture, and the addition of a chemical inhibitor of PI3K prevented GS cell self-renewal. Furthermore, conditional activation of the myristoylated form of Akt-Mer (myr-Akt-Mer) by 4-hydroxy-tamoxifen induced logarithmic proliferation of GS cells in the absence of GDNF for at least 5 months. The myr-Akt-Mer GS cells expressed spermatogonial markers and retained androgenetic imprinting patterns. In addition, they supported spermatogenesis and generated offspring following spermatogonial transplantation into the testes of infertile recipient mice, indicating that they are functionally normal. These results demonstrate that activation of the PI3K-Akt pathway plays a central role in the self-renewal division of spermatogonial stem cells.  相似文献   

13.
The development of techniques to maintain the spermatogonial stem cell (SSC) in vivo and in vitro for extended periods essentially allows for the indefinite continuation of an individual germline. Recent evidence indicates that the aging of male reproductive function is due to failure of the SSC niche. SSCs are routinely cultured for 6 mo, and no apparent effect of culture over this period has been observed. To determine the effects of SSC aging, we utilized an in vitro culture system, followed by quantitative transplantation experiments. After culture for 6 mo, SSCs that had been aged in vivo for 1500 days had a slower proliferation rate than SSCs that were aged in vivo to 8 or 300 days. Examination of methylation patterns revealed no apparent difference in DNA methylation between SSCs that were aged 8, 300, or 1500 days before culture. Long-term culture periods resulted in a loss of stem cell potential without an obvious change in the visual appearance of the culture. DNA microarray analysis of in vivo- and in vitro-aged SSCs identified the differential expression of several genes important for SSC function, including B-cell CLL/lymphoma 6, member B (Bcl6b), Lim homeobox protein 1 (Lhx1), and thymus cell antigen 1, theta (Thy1). Collectively, these data indicate that, although both in vitro and in vivo aging are detrimental to SSC function, in vitro aging results in greater loss of function, potentially due to a decrease in core SSC self-renewal gene expression and an increase in germ cell differentiation gene expression.  相似文献   

14.
15.
The effect of various agents which are known to increase the differentiation of Friend erythroleukemia cells was investigated in cultures of mouse bone marrow cells. N,N-dimethylacetamide (5 and 15 mM) and acetamide (60 mM) significantly increased the number of erythroid colonies observed. Tetramethylurea, dimethylformamide, pyridine N-oxide, and butyric acid were ineffective. Dimethylsulfoxide at a concentration of 1% significantly increased colony number in cultures of marrow cells obtained from male mice, but had no effect in cultures of female bone marrow cells.  相似文献   

16.
17.
Spermatongonial stem cells (SSCs) are unique testis cells that are able to proliferate, differentiate, and transmit genetic information to the next generation. However, the effect of different Sertoli cell types on the expression of specific SSC genes is not yet well understood. In this study, we compare the in vitro effect of adult Sertoli cells, embryonic Sertoli cells, and TM4 (a Sertoli cell line) as feeder layers on the expression of SSC genes. SSCs were isolated from the testis of adult male mice and purified by differential plating. Following enrichment, SSCs were cultivated for 1 and 2 wk in the presence of various feeders. The expression of SSC-specific genes (Mvh, ZBTB, and c-kit) was evaluated by real-time polymerase chain reaction. Our results revealed that expression of the specific SSC genes was significantly higher in the embryonic Sertoli cells after 1 and 2 wk compared to the adult Sertoli cells and the TM4 group. Our finding suggest that co-culturing of SSCs with embryonic Sertoli cells is helpful for in vitro cultivation of SSCs and might improve the self-renewal of these stem cells.  相似文献   

18.
Optimization of in vitro culture system for the expansion and the maturation of male germ cells to post meiotic stages is a valuable tool for studies exploring spermatogenesis regulation and the management of male infertility. Several studies have reported promising results of mouse spermatogonial stem cells culture in three-dimensional (3D) culture systems and a subsequent production of sperm. In the present study, we investigated the capacity of a three-dimensional soft agar culture system (SACS) supplemented with Knockout Serum Replacement (KSR) in colony formation and inducing human germ cells to reach post-meiotic stages. Testicular cells from testes of brain -dead donors were first cultured for three weeks in proliferation medium. The cells were subsequently cultured in the upper layer of the SACS (3D group) in a medium supplemented with KSR and hormones, and the results were compared with that of a two-dimensional (2D) culture system. We found that the number and diameter of colonies and the levels of expression of Scp3 and Integrin α6 in the 3D culture group were significantly higher than in the 2D group. Our findings indicate that SACS can reconstruct a microenvironment capable of regulating both proliferation and differentiation of cell colonies.  相似文献   

19.
The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号