首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
在建立稳定的红藻氨酸(KA)诱发小鼠惊厥模型的基础上,用放射配体受体结合分析法,研究孕烯醇酮(Pe)及其拮抗剂孕烯醇酮硫酸盐(Pes)对小鼠下丘脑、大脑皮层、海马和小脑四个脑区--氨基丁酸A(GABAA)受体的调制作用。结果显示,Pe能增加某些脑区^3H-GABA与GABAA受体的结合量,下丘脑、海马和小脑差异显著(P<0.05或P<0.001),而大脑皮层差异不显著(P>0.05)。Pe对GABAA受体的调制作用能被印防已毒素(Pic)阻断,对KA的致惊效应具有抑制作用。Pes能显著降低各脑区GABAA受体的结合量(P<0.01或P<0.001),对陈词滥调厥有促进作用。实验结果提示:孕烯醇酮具有明显的镇静和抗厥效应,并且可能是通过GABAA受体介导的。  相似文献   

2.
遗传性癫痫易感大鼠脑内NMDAR1基因表达   总被引:6,自引:0,他引:6  
N-甲基-D天门冬氨酸(NMDA)受体与癫痫及癫痫易感性的形成密切相关. 以遗传性癫痫易感大鼠P77PMC为研究对象, 通过RNA印迹杂交检测,NMDA受体一型亚单位(NMDAR1)mRNA在惊厥后不同脑区表达, 结果显示: P77PMC大鼠惊厥后, 大脑皮层、海马、皮层下、下丘NMDAR1 mRNA表达呈时间依赖性增加;比较惊厥即刻与惊厥后24 h, 四个脑区NMDAR1 mRNA分别增加了111%、113%、165%和202%. 提示NMDA受体 亚单位受惊厥活动调控,并参与惊厥的发生、发展及惊厥后突触结构的重建.  相似文献   

3.
海马mu型阿片肽受体介导大鼠癫痫发作敏感性形成   总被引:1,自引:1,他引:0  
Liu H  Gao HM  Zhang WQ  Tang YY  Song HS 《生理学报》2004,56(1):101-106
为探讨海马mu型阿片肽受体介导癫痫发作敏感性形成的作用,实验采用微渗透泵技术,观察大鼠腹侧海马注射mu型阿片肽受体激动剂PL017(2.09、2.59、3.29μg/μ1)、拮抗剂β-funaltrexamine hydrochloride(β-FNA、0.88、1.10、1.35μg/μl)对红藻氨酸(kainic acid,KA)诱导癫痫发作的干预作用.PL017能够明显缩短癫痫发作潜伏期、增加癫痫发作级别(P<0.05),β-FNA则可显著延长癫痫发作潜伏期、降低发作级别(P<0.01);PL017和β-FNA的干预作用均表现出剂量依赖效应.结果表明,海马mu型阿片肽受体具有促进KA诱导的癫痫发作敏感性形成作用.  相似文献   

4.
目的:研究依托咪(Etomidate,ET)对大鼠杏仁核点燃发作的抑制及其抗癫痫作用.方法:测定ET对大鼠杏仁核点燃发作的脑电活动及行为变化指标的影响,测定ET对GABAA受体拮抗剂印防己毒素诱发小鼠惊厥的影响.结果:依托咪酯(6~9mg·kg-1)可抑制杏仁核点燃发作,缩短后放电时程,降低Racine's分级(P<0.01);ET对GABAA受体拮抗剂印防己毒素致惊小鼠有抑制作用.结论:依托咪酯对大鼠杏仁核点燃模型和印防己毒素致惊小鼠均具有抑制作用,可能与GABA神经系统抑制作用有关.  相似文献   

5.
目的:研究慢性束缚应激时大鼠脑内糖皮质激素受体的变化以及逍遥散、四君子汤、金匮肾气丸三种中药复方对其影响.方法:制作大鼠束缚应激模型,用特制束缚架连续束缚7 d与21 d,每天3 h用免疫组织化学方法结合图像分析检测中枢(海马CA1区、齿状回、大脑皮质)糖皮质激素受体的变化.结果:慢性束缚应激后,大鼠海马CA1区、大脑皮层和齿状回GR免疫反应阳性细胞平均总面积和阳性细胞数目在慢性应激的早期(7d模型组)明显增多(P<0.05),免疫反应强度明显增强(P<0.01).在慢性应激的后期(21 d模型组),则表现为相关脑区GR免疫反应阳性细胞平均总面积和阳性细胞数目均明显减少(P<0.05),免疫反应强度明显减弱(P<0.01).中药复方各组相关脑区神经元GR免疫反应阳性细胞平均总面积和阳性细胞数目较21 d模型组明显增高,免疫反应强度明显增强,三给药组之间并无明显差异,说明三给药组均能使GR含量保持于较高的状态,同时能保持GR免疫活性,其中又以逍遥散作用为明显.结论:逍遥散、四君子汤和金匮肾气丸明显逆转糖皮质激素受体下降趋势.  相似文献   

6.
本研究旨在探讨甲醛导致机体神经系统病变的具体机制。选用雄性Balb/c小鼠为研究对象,动态吸入甲醛方式染毒7天,每天8 h,甲醛浓度分别为0、0.5、3.0 mg/m3,同时设置一氧化氮合酶(nitric oxide synthase,NOS)拮抗剂(NG-monomethylL-arginine,L-NMMA)组,该组小鼠同时进行3.0 mg/m3甲醛染毒。染毒结束后,用试剂盒检测小鼠大脑皮层、海马和脑干中环磷酸腺苷(cyclic adenosine monophosphate,cAMP)、环磷酸鸟苷(cyclic guanine monophosphate,cGMP)、一氧化氮(nitric oxide,NO)含量和NOS活性的变化。结果显示,与对照组相比,小鼠大脑皮层和脑干中cAMP含量在0.5 mg/m3染毒组显著升高(均P0.05),但是在3.0 mg/m3染毒组显著降低(P0.05),海马中cAMP含量仅在3.0 mg/m3染毒组出现显著降低(P0.05);与对照组相比,L-NMMA拮抗组小鼠cGMP和NO含量分别在海马和大脑皮层中显著上升(均P0.01),而cAMP含量和NOS活性在不同脑区中无显著变化。与3.0 mg/m3染毒组相比,L-NMMA拮抗组不同脑区中cAMP含量均显著上升(均P0.05),NOS活性显著下降(P0.05或P0.01);大脑皮层和脑干中的cGMP含量以及脑干中的NO含量亦出现显著性变化(P0.05或P0.01)。以上结果提示,甲醛暴露的神经系统毒性作用与NO/cGMP信号转导通路和cAMP信号通路存在一定的关系。  相似文献   

7.
地塞米松对TNF-α致痫大鼠海马GABAA受体表达的影响   总被引:1,自引:0,他引:1  
目的观察在地塞米松作用下,肿瘤坏死因子(TNF-α)致痫大鼠海马GABAA受体表达的改变,从而研究癫痫发病过程中内分泌和免疫调节相互关系的机制.方法采用侧脑室分别注射TNF-α、地塞米松(Dex) TNF-α以及生理盐水建立大鼠模型,运用SABC法进行免疫组化染色,观察大鼠海马GABAA受体表达的变化.结果 GABAA受体免疫反应主要定位于胞膜上.细胞计数及统计学处理表明: TNF-α组海马CA1、CA3区GABAA受体阳性细胞数较对照组及Dex TNF-α组显著减少(P<0. 01),而对照组和Dex TNF-α组无显著差异(P>0. 05).结论地塞米松对TNF-α致痫有抑制作用,提示地塞米松的抑痫作用和TNF-α的致痫作用之一可能是通过调节抑制性氨基酸受体而实现的.  相似文献   

8.
采用逆转录-聚合酶链式反应检测了慢性足底电击结合噪声应激致高血压大鼠下丘脑、延髓、中脑、垂体和肾上腺等组织中编码肾上腺髓质素的肾上腺髓质素前肽原(preproadrenomedullin,ppADM)基因以及ADM的特异性受体组件降钙素受体样受体(calcitonin-receptor-like receptor,CRLR)和受体活性调节蛋白2和3(receptor-activty-modifying proteins,RAMP2和RAMP3)表达的变化.我们观察到:与对照组相比,以3-磷酸甘油醛脱氢酶作为内参照,15 d足底电击结合噪声应激引起下丘脑、垂体和肾上腺中ppADM mRNA表达上调,而在延髓和中脑表达明显下调(P<0.01或P<0.05);CRLR基因表达量正常时在下丘脑相对较高,应激15 d后CRLR表达在延髓、中脑和下丘脑下调(P<0.01或P<0.05),而在垂体和肾上腺的表达无明显变化;应激后RAMP2基因在延髓和下丘脑表达上调,而在肾上腺表达显著下调(P<0.01),其他部位无明显变化;RAMP3基因在对照组大鼠的中脑和下丘脑表达较高,在应激性高血压大鼠的下丘脑和垂体表达上调(P<0.01或P<0.05),而在中脑和肾上腺表达下调(P<0.05),在延髓中的表达变化无统计学差异.上述结果提示:慢性足底电击结合噪声应激引起明显的中枢和下丘脑-垂体-肾上腺轴ADM及其受体组件CRLR/RAMP2或CRLR/RAMP3基因的表达变化.但慢性应激后中枢源性ADM及其受体的表达变化对应激和血压的调节以及在应激致高血压中的确切作用及机制尚待进一步研究.  相似文献   

9.
复方银杏胶囊镇痛作用及其机制的实验研究   总被引:3,自引:0,他引:3  
目的:研究复方银杏胶囊的镇痛作用及其机制.方法:大鼠电刺激法测定痛阈;用试剂盒比色法测定脑组织中谷氨酸的含量;原子吸收光谱法测定脑组织中钙离子(Ca2 )浓度;免疫组织化学ABC法观察脑组织中N-甲基-D-天门冬氨酸Ⅰ型受体(NMDAR1)的分布.结果:复方银杏胶囊350 mg/kg可显著提高大鼠电刺激嘶叫阈(P<0.05),700 mg/kg显著减少小鼠脑组织中谷氨酸的释放以及脑内钙离子浓度(P<0.05);复方银杏胶囊700 mg/kg、350 mg/kg可明显减少疼痛模型小鼠大脑皮层NMDAR1阳性细胞数(P<0.01,P<0.05).结论:复方银杏胶囊具有良好的镇痛效应,其镇痛作用可能与拮抗NMDA受体从而抑制脑组织中谷氨酸的释放及钙离子内流有关.  相似文献   

10.
采用行为观察和生化检测相结合的方法 ,在过去工作的基础上 ,研究了 12月龄和 18月龄小鼠学习记忆能力的变化和 18月龄小鼠四个脑区 (海马、大脑皮层、四叠体和小脑 )突触体内 [Ca2 ]i 的水平 ,同时还比较了老年记忆保持良好组与记忆障碍组小鼠的脑钙水平。结果表明 ,随着年龄的增长 ,小鼠的学习记忆能力显著下降 ,上述脑区 (除大脑皮层外 )突触内 [Ca2 ]i 均明显升高 ,其中老年记忆障碍小鼠脑钙水平升高最为显著。提示 ,小鼠衰老性记忆障碍可能与其脑突触体内 [Ca2 ]i 的超载有关。  相似文献   

11.
Neurosteroids are endogenously derived compounds, mediating rapid effects in the central nervous system. They participate in vital processes, including memory and learning, neuroplasticity, and neuroprotection in Alzheimer’s disease. However, the mechanisms behind those effects remain to be elucidated. The neurosteroids pregnenolone sulphate (PS) and pregnanolone sulphate (3α5βS) have recently been shown to allosterically alter the NMDA receptor in nanomolar concentrations. Those studies featured ifenprodil, which is a dirty drug, with affinity to many targets. In this study we compare the NMDA receptors in the hippocampus to recombinant NMDA receptors, using [3H]-MK-801 as radioligand. The results show that neurosteroids modulate the ifenprodil binding kinetics in a narrow concentration interval, addressing it to the NR2B subunit, since no effects were recorded at recombinant NR1/NR2A receptors. The effects were also seen as changes in the manner ifenprodil displaced or induced the dissociation of [3H]-MK-801. It indicates that the neurosteroidal effects indeed alter the ion pore of the NMDA receptor, why it is reasonable to believe that these findings have physiological relevance.  相似文献   

12.
Three days after systemic administration of kainic acid (15 mg/kg, s.c.), selected cholinergic markers (choline acetyltransferase, acetylcholinesterase, muscarinic acetylcholine receptor, and high-affinity choline uptake) and GABAergic parameters [benzodiazepine and gamma-aminobutyric acid (GABA) receptors] were studied in the frontal and piriform cortex, dorsal hippocampus, amygdaloid complex, and nucleus basalis. Kainic acid treatment resulted in a significant reduction of choline acetyltransferase activity in the piriform cortex (by 20%), amygdala (by 19%), and nucleus basalis (by 31%) in comparison with vehicle-injected control rats. A lower activity of acetylcholinesterase was also determined in the piriform cortex following parenteral kainic acid administration. [3H]Quinuclidinyl benzilate binding to muscarinic acetylcholine receptors was significantly decreased in the piriform cortex (by 33%), amygdala (by 39%), and nucleus basalis (by 33%) in the group treated with kainic acid, whereas such binding in the hippocampus and frontal cortex was not affected by kainic acid. Sodium-dependent high-affinity choline uptake into cholinergic nerve terminals was decreased in the piriform cortex (by 25%) and amygdala (by 24%) after kainic acid treatment. In contrast, [3H]flunitrazepam binding to benzodiazepine receptors and [3H]muscimol binding to GABA receptors were not affected 3 days after parenteral kainic acid application in any of the brain regions studied. The data indicate that kainic acid-induced limbic seizures result in a loss of cholinergic cells in the nucleus basalis that is paralleled by degeneration of cholinergic fibers and cholinoceptive structures in the piriform cortex and amygdala, a finding emphasizing the important role of cholinergic mechanisms in generating and/or maintaining seizure activity.  相似文献   

13.
Convulsants induce interleukin-1 beta messenger RNA in rat brain.   总被引:6,自引:0,他引:6  
The effects of systemic administration of kainic acid and pentylenetetrazol on interleukin-1 beta gene expression in the rat brain was studied. After the administration of kainic acid in a convulsive dose (10 mg/kg i.p.), Interleukin-1 beta mRNA was induced intensely in the cerebral cortex, thalamus and hypothalamus, moderately in the hippocampus and weakly in the striatum, but not in the midbrain, pons-medulla and cerebellum. Pentylenetetrazol induced Interleukin-1 beta mRNA in the cerebral cortex, hypothalamus, and hippocampus with a faster time-course than kainic acid. Diazepam suppressed both the convulsion and the induction of Interleukin-1 beta mRNA produced by kainic acid. Dexamethasone suppressed the induction of Interleukin-1 beta mRNA, but did neither the convulsion nor the induction of c-fos mRNA following the injection of kainic acid. These results provide the first evidence that intensive neuronal excitation induces Interleukin-1 beta mRNA in particular regions of the brain.  相似文献   

14.
Abstract: We have investigated the possibility that the synthesis/accumulation of neurosteroids, i.e., brain-produced steroids putatively endowed with modulatory actions in the CNS, is regulated by monoaminergic receptor-mediated mechanisms. In minces of rat brain cortex, l -ascorbic acid concentration-dependently (0.07–1.0 m M ) increases the levels of pregnenolone, allotetrahydrodeoxycorticosterone, and dehydroepiandrosterone. This effect of l -ascorbic acid is region-dependent: in hippocampus, progesterone and allopregnanolone are also increased, whereas dehydroepiandrosterone is unchanged, and in corpus striatum only progesterone is increased significantly. 5-Hydroxytryptamine (10 µ M ), 1-(3-chlorophenyl)piperazine (1.0 µ M ), and 5-methoxytryptamine (0.4 µ M ) mimic the effect of l -ascorbic acid, whereas a pretreatment with p -chlorophenylalanine (400 mg/kg i.p., 2 days) reduces the amplitude of the l -ascorbic acid effect on brain cortical neurosteroids. The effect of l -ascorbic acid is blocked by the nonselective serotonin antagonists methiothepin, clozapine, methysergide, and pizotifen, but not mesulergine, spiperone, MDL 72222, and dl -propranolol, nor by the catecholaminergic receptor antagonists prazosin and S (−)-sulpiride. l -Ascorbic acid is not additive with dibutyryl-cyclic AMP and, furthermore, the inhibition of adenylate cyclase by MDL 12330A, but not of phospholipase C by U-73122, markedly attenuates the l -ascorbic acid-induced increase of pregnenolone in rat brain cortical minces. Together these data suggest that l -ascorbic acid plays a role in the modulation of neurosteroidogenesis, presumably by favoring the activation of the purported serotonin type 6 receptor by endogenous serotonin.  相似文献   

15.
It has been established that neurosteroids can either inhibit or enhance GABA(A) receptor activity. Although GABA is the main inhibitory neurotransmitter in the mammalian retina, the effects of neurosteroids on retinal GABAergic activity have not been investigated. The aim of this work was to study the neurochemical and electroretinographic effects of neurosteroids in the golden hamster. On one hand, pregnenolone sulfate inhibited and allotetrahydrodeoxycorticosterone increased GABA-induced [36Cl]- uptake in neurosynaptosomes. On the other hand, in whole retinas, pregnenolone sulfate increased, whereas allotetrahydrodeoxycorticosterone decreased high potassium-induced [3H]GABA release. The effect of both neurosteroids on GABA release was Ca2+-dependent, as in its absence release was not altered. The intravitreal injection of pregnenolone sulfate or vigabatrin (an irreversible inhibitor of GABA degradation) significantly decreased scotopic b-wave amplitude, whereas the opposite effect was evident when bicuculline or allotetrahydrodeoxycorticosterone were injected. A protein with a molecular weight close to that of hamster adrenal cytochrome P450 side-chain cleavage (P450scc) was detected in the hamster retina. P450scc-like immunoreactivity was localized in the inner nuclear and the ganglion cell layers. These results indicate that neurosteroids significantly modulate retinal GABAergic neurotransmission and electroretinographic activity. In addition, the selective localization of P450scc suggests that neurosteroid biosynthesis might occur only in some layers of the hamster retina.  相似文献   

16.
This study examined the allosteric modulation of the NMDA receptor by nanomolar concentrations of neurosteroids in rats treated long term with morphine. The neurosteroids dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate (PS) and pregnanolone sulfate (3α5βS) are important mediators in the central nervous system. They induce rapid responses by non-classical steroidal mechanisms, e.g. via interaction with the N-methyl-d-aspartate (NMDA) receptor, and are known to modify the binding of ifenprodil to the NMDA receptor subunit NR2B. The NMDA receptor is involved in several processes, including memory, learning, synaptic plasticity and neuronal development. Morphine, a μ-opioid receptor agonist, has an important role in the clinical treatment of pain. The main drawback of morphine treatment is the associated development of dependence and tolerance. The mechanisms behind these phenomena are still to be elucidated, but several reports suggest the involvement of the NMDA receptor. The results of the present study indicate that the allosteric modulation induced by the neurosteroids DHEAS, PS and 3α5βS was similar in all tested brain regions. This suggests that the NR2B receptor subunit behaves independently of its site of expression. Moreover, the NR2B subunit was up-regulated in the frontal cortex but not in the hippocampus or hypothalamus. It is concluded that morphine does not affect the neurosteroid modulatory effect on ifenprodil binding in the rat hippocampus or hypothalamus but does significantly affect both the expression of the NR2B subunit and the 3α5βS modulatory effect on ifenprodil binding in the frontal cortex. It is suggested that the observed effect of long term morphine on the properties of NR2B in the frontal cortex may be associated with the mechanism underlying the development of opiate dependence.  相似文献   

17.
Over the past 20 years it has become apparent that certain steroids, synthesised de novo in the brain, hence named neurosteroids, produce immediate changes (within seconds) in neuronal excitability, a time scale that precludes a genomic locus of action. Identified molecular targets underlying modulation of brain excitability include both the inhibitory GABA(A) and the excitatory NMDA receptor. Of particular interest is the interaction of certain neurosteroids with the GABA(A) receptor, the major inhibitory receptor in mammalian brain. During the last decade, compelling evidence has accrued to reveal that locally produced neurosteroids may selectively "fine tune" neuronal inhibition. A range of molecular mechanisms including the subunit composition of the receptor(s), phosphorylation and local steroid metabolism, underpin the region- and neuronal selectivity of action of neurosteroids at synaptic and extrasynaptic GABA(A) receptors. The relative contribution played by each of these mechanisms in a variety of physiological and pathophysiological scenarios is currently being scrutinised at a cellular and molecular level. However, it is not known how such mechanisms may act in concert to influence behavioural profiles in health and disease. An important question concerns the identification of the anatomical substrates mediating the repertoire of behaviours produced by neurosteroids. "Knock-in" mice expressing mutant GABA(A) subunits engineered to be insensitive to benzodiazepines or general anaesthetics have proved invaluable in evaluating the role of GABA(A) receptor subtypes in complex behaviours such as sedation, cognition and anxiety [Rudolph, U., Mohler, H., 2006. GABA-based therapeutic approaches: GABA(A) receptor subtype functions. Curr. Opin. Pharmacol. 6, 18-23]. However, the development of a similar approach for neurosteroids has been hampered by the limited knowledge that, until recently, has surrounded the identity of the amino acid residues contributing to the neurosteroid binding pocket. Here, we will review recent progress in identifying the neurosteroid binding site on the GABA(A) receptor, and discuss how these discoveries will impact on our understanding of the role of neurosteroids in health and disease.  相似文献   

18.
The effects of social isolation on behavior, neuroactive steroid concentrations, and GABA(A) receptor function were investigated in rats. Animals isolated for 30 days immediately after weaning exhibited an anxiety-like behavioral profile in the elevated plus-maze and Vogel conflict tests. This behavior was associated with marked decreases in the cerebrocortical, hippocampal, and plasma concentrations of pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone compared with those apparent for group-housed rats; in contrast, the plasma concentration of corticosterone was increased in the isolated animals. Acute footshock stress induced greater percentage increases in the cortical concentrations of neuroactive steroids in isolated rats than in group-housed rats. Social isolation also reduced brain GABA(A) receptor function, as evaluated by measuring both GABA-evoked Cl(-) currents in XENOPUS: oocytes expressing the rat receptors and tert-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding to rat brain membranes. Whereas the amplitude of GABA-induced Cl(-) currents did not differ significantly between group-housed and isolated animals, the potentiation of these currents by diazepam was reduced at cortical or hippocampal GABA(A) receptors from isolated rats compared with that apparent at receptors from group-housed animals. Moreover, the inhibitory effect of ethyl-beta-carboline-3-carboxylate, a negative allosteric modulator of GABA(A) receptors, on these currents was greater at cortical GABA(A) receptors from socially isolated animals than at those from group-housed rats. Finally, social isolation increased the extent of [(35)S]TBPS binding to both cortical and hippocampal membranes. The results further suggest a psychological role for neurosteroids and GABA(A) receptors in the modulation of emotional behavior and mood.  相似文献   

19.
Abstract: Evidence that neurosteroids are potent modulators of the action of GABA at GABAA receptors has prompted the investigation of the mechanism that controls brain neurosteroid synthesis by glial cell mitochondria in vivo. In vitro studies suggest that the interaction of the diazepam binding inhibitor (DBI)—a polypeptide that is abundant in steroidogenic cells—with glial mitochondrial DBI receptors (MDRs) is a crucial step in the physiological regulation of neurosteroid biosynthesis. MDRs bind 4-chlorodiazepam (4′-CD), N,N-di-n-hexyl-2-(4-fluorophenyl)-indol-3-acetamide (FGIN-1–27), and the isoquinoline carboxamide PK 11195 with high affinity, and these ligands have been used to investigate whether the stimulation of glial MDRs increases brain pregnenolone production in vivo. Adrenalectomized and castrated (A-C) male rats (to eliminate peripheral sources of pregnenolone) were pretreated with trilostane (to prevent pregnenolone metabolism to progesterone), and the pregnenolone content in brain regions dissected after fixation with a 0.8-s exposure to microwave irradiation focused to the head was determined by HPLC followed by specific radioimmunoassay. The forebrain and cerebellum of A-C rats contained 4–7 ng of pregnenolone/g of tissue, and the olfactory bulb contained 10–14 ng/g. These concentrations of brain pregnenolone are only 30–40% lower than those of shamoperated rats. In contrast, the plasma pregnenolone content of sham-operated rats was 2–3 ng/ml, but it was only 0.15–0.20 ng/ml in the plasma of A-C rats. In A-C rats, treatment with the MDR ligands 4-CD and FGIN-1–27 increased the pregnenolone content in the brain but failed to change the plasma or peripheral tissue content of this steroid. The effect of 4′-CD on brain pregnenolone content was maximal (70–100% increase) at the dose of 18 μmol/kg, 5–10 min after intravenous injection. The effect of oral administration of FGIN-1–27 on brain pregnenolone content was maximal (80–150% increase) at doses of 400–800 μmollkg and peaked at ~ 1 h. That this effect of FGIN-1–27 was mediated by the MDR was documented by pre-treatment with the MDR partial agonist PK 11195 (100 μmol/kg, i.p.). PK 11195 did not affect basal brain pregnenolone content but prevented the accumulation of brain pregnenolone induced by FGIN-1–27. FGIN-1–27 and 4-CD failed to increase the brain concentration of dehydre epiandrosterone in A-C rats. These data suggest that glial cell MDRs play a role in neurosteroid biosynthesis in vivo.  相似文献   

20.
Neurosteroids in rodents can originate from peripheral tissues or be locally synthesized in specific brain areas. There is, as yet, no information about the synthesis and regulation of neurosteroids in human brain. We examined the ability of human brain cells to synthesize steroids from a radiolabeled precursor and the mRNA and protein expression of key components of peripheral steroidogenic machinery. Oligodendrocytes are the source of pregnenolone in human brain. Human astrocytes do not synthesize radiolabeled pregnenolone, nor do human neurons. There is potential for all three cell types to metabolize pregnenolone to other neurosteroids, including dehydroepiandrosterone. mRNA and protein for cytochrome P450 17alpha-hydroxylase were found in all cell types, although no activity could be demonstrated. We examined the ability of the cells to make dehydroepiandrosterone via an alternative pathway induced by treatment with Fe2+. Oligodendrocytes and astrocytes make dehydroepiandrosterone via this pathway, but neurons do not. In searching for a natural regulator of dehydroepiandrosterone formation, we observed that treating oligodendrocytes with beta-amyloid, which increases reactive oxygen species, also increased dehydroepiandrosterone formation. These effects of beta-amyloid were blocked by vitamin E. These results indicate that human brain makes steroids in a cell-specific manner and suggest that dehydroepiandrosterone synthesis can be regulated by intracellular free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号