首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The tyrosine kinase inhibitor genistein (5-200 microM) suppressed Ca(2+)-dependent fMLP (1 microM) and ATP (100 microM)-induced release of the lysosomal enzyme, beta-glucuronidase from neutrophil-like HL-60 granulocytes. Agonist-induced Ca2+ mobilization resulted from the release of intracellular Ca2+ stores and the influx of extracellular Ca2+. Genistein (200 microM) suppressed fMLP (1 microM) and ATP (100 microM)-induced Ca2+ mobilization, by 30-40%. Ca2+ release from intracellular stores was unaffected by genistein, however, genistein abolished agonist-induced Ca2+ (Mn2+) influx. Consistent with these findings, genistein (200 microM) or removal of extracellular Ca2+ (EGTA 1 mM), inhibited Ca(2+)-dependent agonist-induced beta-glucuronidase release by similar extents (about 50%). In the absence of extracellular Ca2+, genistein had a small additional inhibitory effect on fMLP and ATP-induced beta-glucuronidase release, suggesting an additional inhibitory site of action. Genistein also abolished store-operated (thapsigargin-induced) Ca2+ (Mn2+) influx. Neither fMLP nor ATP increased the rate of Mn2+ influx induced by thapsigargin (0.5 microM). These data indicate that agonist-induced Ca2+ influx and store-operated Ca2+ influx occur via the same genistein-sensitive pathway. Activation of this pathway supports approximately 50% of lysosomal enzyme release induced by either fMLP or ATP from HL-60 granulocytes.  相似文献   

2.
Dimeric galectin-1 (dGal-1) is a homodimeric lectin with multiple proposed functions. Although dGal-1 binds to diverse glycans, it is unclear whether dGal-1 preferentially binds to specific subsets of glycans on cell surfaces to transmit signals. To explore this question, we selectively inhibited major glycan biosynthetic pathways in human HL60, Molt-4, and Jurkat cells. Inhibition of N-glycan processing blocked surface binding of dGal-1 and prevented dGal-1-induced Ca(2+) mobilization and phosphatidylserine exposure. By contrast, inhibition of O-glycan or glycosphingolipid biosynthesis did not affect dGal-1 binding or dGal-1-induced Ca(2+) mobilization and phosphatidylserine exposure. These results demonstrate that dGal-1 preferentially binds to and signals through glycoproteins containing complex-type N-glycans in at least some leukocyte subsets.  相似文献   

3.
In response to heat-stable enterotoxin of Vibrio cholerae non-O1, the initial rise of cytosolic Ca(2+) occurred with activation of IP(3). Chelation of extracellular Ca(2+) with EGTA and suspension of cells in Ca(2+) free buffer both demonstrated the involvement of internal stores in the rise of [Ca(2+)]i. Cells pretreated with dantrolene resulted in decrease of [Ca(2+)]i response which suggested that the rise of intracellular level of Ca(2+) was mostly due to the mobilization from IP(3) sensitive stores. When the cytosolic Ca(2+) was chelated by loading the cells with BAPTA, NAG-ST could not induce Ca(2+) entry to the cell as assessed by Mn(2+) quenching of fura-2 fluorescence which suggested that calcium influx across the plasma membrane depends upon initial rise of this bivalent cation that maintained the sustained phase of [Ca(2+)]i response. Addition of toxin to the fura-2-loaded cells, preincubated with lanthanum chloride, resulted in reduction of [Ca(2+)]i level with a short duration of irregular sustained phase further suggesting that the influx of Ca(2+) across the plasma membrane might be through the calcium channel.  相似文献   

4.
Pulmonary surfactant with surfactant-associated proteins (PS+SAP) decreases pulmonary inflammation by suppressing neutrophil activation. We have observed that PS+SAP inserts channels into artificial membranes, depolarizes neutrophils, and depresses calcium influx and function in stimulated neutrophils. We hypothesize that PS+SAP suppresses neutrophil activation by depletion of internal Ca(++) stores and that PS+SAP induces depletion through release of Ca(++) stores and through inhibition of Ca(++) influx. Our model predicts that PS+SAP releases Ca(++) stores through insertion of channels, depolarization of neutrophils, and activation of a G protein-dependent pathway. If the model of channel insertion and membrane depolarization is accurate, then gramicidin-a channel protein with properties similar to those of PS+SAP-is expected to mimic these effects. Human neutrophils were monitored for [Ca(++)] responses after exposure to one of two different PS+SAP preparations, a PS-SAP preparation, gramicidin alone, and gramicidin reconstituted with phospholipid (PLG). [Ca(++)] responses were reexamined following preexposure to inhibitors of internal Ca(++) release or the G protein pathway. We observed that (i) 1% PS+SAP-but not PS-SAP-causes transient increase of neutrophil [Ca(++)] within seconds of exposure; (ii) 1% PLG-but not gramicidin alone-closely mimics the effect of PS+SAP on Ca(++) response; (iii) PS+SAP and PLG equally depolarize neutrophils; (iv) direct inhibition of internal Ca(++) stores releases or of G protein activation suppresses Ca(++) responses to PS+SAP and PLG; and (v) preexposure to either PS+SAP or PLG inhibits Ca(++) influx following fMLP stimulation. We conclude that PS+SAP independently depolarizes neutrophils, releases Ca(++) from internal stores by a G protein-mediated pathway, and alters subsequent neutrophil response to physiologic stimulants by depleting internal Ca(++) stores and by inhibiting Ca(++) influx during subsequent fMLP activation. The mimicking of these results by PLG supports the hypothesis that PS+SAP initiates depolarization via channel insertion into neutrophil plasma membrane.  相似文献   

5.
Neurotrophins (NTs) play an essential role in modulating activity-dependent neuronal plasticity. In this context, the site and extent of NT secretion are of crucial importance. Here, we demonstrate that the activation of phospolipase C (PLC) and the subsequent mobilization of Ca(2+) from intracellular stores are essential for NT secretion initiated by both Trk and glutamate receptor activation. Mutational analysis of tyrosine residues, highly conserved in the cytoplasmic domain of all Trk receptors, revealed that the activation of PLC-gamma in cultured hippocampal neurons and nnr5 cells is necessary to mobilize Ca(2+) from intracellular stores, the key mechanism for regulated NT secretion. A similar signalling mechanism has been identified for glutamate-mediated NT secretion-which in part depends on the activation of PLC via metabotropic receptors-leading to the mobilization of Ca(2+) from internal stores by inositol trisphosphate. Thus, PLC-mediated signal transduction pathways are the common mechanisms for both Trk- and mGluRI-mediated NT secretion.  相似文献   

6.
Neutrophils possess a classical Ca2+, phosphatidyl serine (PS) and diglyceride (DG)-dependent protein kinase C (beta-PKC) which was translocatable from cytosol to membrane in response to elevated Ca2+ in the physiologic range or to pretreatment with phorbol myristate acetate (PMA). The translocatable beta-PKC was purified from neutrophil membranes prepared in the presence of Ca2+, eluted with EGTA and subjected to hydroxyapatite chromatography. An 80-kDa protein possessing Ca/DG/PS-dependent histone phosphorylating activity was recognized by a monoclonal antibody to beta-PKC but not to alpha-PKC or gamma-PKC. A cytosolic kinase activity remaining after Ca(2+)-induced translocation of beta-PKC was dependent on PS and DG but did not require Ca2+. This novel Ca(2+)-independent, PS/DG-dependent kinase, termed nPKC, eluted from hydroxyapatite between alpha-PKC and beta-PKC, ran as a 76-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was reactive to a polyclonal consensus antibody but not to monoclonal antibodies to alpha-PKC, beta-PKC, or gamma-PKC. Long chain fatty acyl-CoA, but not the corresponding free fatty acids, inhibited nPKC in the 1-10 microM range. The chemotactic peptide fMet-Leu-Phe triggered prompt but transient increases in neutrophil long chain fatty acid acyl-CoA, suggesting that nPKC is regulated by fatty acyl-CoA as well as DG during neutrophil activation. Purified beta-PKC phosphorylated a number of cytosolic proteins in a Ca(2+)-dependent manner, including a major 47-kDa cytosolic protein, which may be implicated in superoxide anion generation. In contrast, nPKC did not phosphorylate the 47-kDa protein, but phosphorylated numerous cytosolic proteins in a Ca(2+)-independent manner, including a 66-kDa protein which was not phosphorylated by beta-PKC. Differences in location, substrate specificity, and cofactor dependence between nPKC and beta-PKC suggest these kinases may play selective roles in the activation sequence of the neutrophil.  相似文献   

7.
Two potential mechanisms by which the intracellular Ca(2 stores might modulate catecholamine release from bovine adrenal chromaffin cells were investigated: (i) that the cytosolic Ca(2+)transient caused by Ca(2+)release from the intracellular stores recruits additional chromaffin granules to a readily releasable pool that results in augmented catecholamine release when this is subsequently evoked, and (ii) that the Ca(2+)influx that follows depletion of intracellular stores (i.e. store-operated Ca(2+)entry) triggers release per se thereby augmenting evoked catecholamine release. When histamine or caffeine were applied in Ca(2+)-free perfusion media, a transient elevation of intracellular free Ca(2+)occurred owing to mobilization of Ca(2+)from the stores. When Ca(2+)was later readmitted to the perfusing fluid there followed a prompt and maintained rise in intracellular Ca(2+)concentrations of magnitude related to the degree of store mobilization. In parallel experiments, increased catecholamine secretion was measured under the conditions when Ca(2+)influx following store-mobilization occurred. Furthermore, the size of the catecholamine release increment correlated with the degree of Ca(2+)influx. Store-operated Ca(2+)entry evoked by mobilization with histamine and/or caffeine did not augment nicotine-evoked secretion per se; that is, it augmented evoked catecholamine release only to the extent that it increased basal catecholamine release. The nicotine-evoked catecholamine release was sensitive to cytosolic BAPTA, which, at the concentration used (50 microM BAPTA-AM), reduced release by approximately 25%. However, the increment in basal catecholamine release which followed Ca(2+)influx triggered by Ca(2+)store mobilization was not reduced by intracellular BAPTA. This finding is inconsistent with the hypothesis that the elevated cytosolic Ca(2+)from store mobilization recruits additional vesicles of catecholamine to the sub-plasmalemmal release sites to augment subsequently evoked secretion. This position is supported by the observation that histamine (10 microM) in Ca(2+)-free medium caused a pronounced elevation of cytosolic free Ca(2+), but this caused no greater catecholamine release when Ca(2+)was re-introduced than did prior exposure to Ca(2+)-free medium alone, which caused no elevation of cytosolic free Ca(2+). It is concluded that intracellular Ca(2+)stores can modulate secretion of catecholamines from bovine chromaffin cells by permitting Ca(2+)influx through a store-operated entry pathway. The results do not support the notion that the Ca(2+)released from intracellular stores plays a significant role in the recruitment of vesicles into the ready-release pool under the experimental conditions reported here.  相似文献   

8.
Electrically permeabilized neutrophils were used to study the mechanism of activation of the respiratory burst by the chemotactic agent formyl-methionyl-leucyl-phenylalanine (fMLP). Permeabilization was assessed by flow cytometry, radioisotope trapping, and by the requirement for exogenous NADPH for oxygen consumption. A respiratory burst could be elicited by fMLP, phorbol ester, or diacylglycerol in permeabilized cells suspended in EGTA-buffered medium with 100 nM free Ca2+. The fMLP response persisted even in cells depleted of intracellular Ca2+ stores by pretreatment with ionomycin. Therefore, a change in cytosolic free Ca2+ ([Ca2+]i) is not required for receptor-mediated stimulation of the respiratory burst. The responses induced by phorbol ester and diacylglycerol were largely inhibited by H7, a protein kinase C antagonist. In contrast, the stimulation of oxygen consumption by fMLP was unaffected by H7. These results suggest that a third signaling pathway, distinct from changes in [Ca2+]i and activation of protein kinase C, is involved in the response of neutrophils to chemoattractants.  相似文献   

9.
Presenilin-1 and -2 (PS1 and PS2) mutations, the major cause of familial Alzheimer's disease (FAD), have been causally implicated in the pathogenesis of neuronal cell death through a perturbation of cellular Ca(2+) homeostasis. We have recently shown that, at variance with previous suggestions obtained in cells expressing other FAD-linked PS mutations, PS2-M239I and PS2-T122R cause a reduction and not an increase in cytosolic Ca(2+) rises induced by Ca(2+) release from stores. In this contribution we have used different cell models: human fibroblasts from controls and FAD patients, cell lines (SH-SY5Y, HeLa, HEK293, MEFs) and rat primary neurons expressing a number of PS mutations, e.g. P117L, M146L, L286V, and A246E in PS1 and M239I, T122R, and N141I in PS2. The effects of FAD-linked PS mutations on cytosolic Ca(2+) changes have been monitored either by using fura-2 or recombinant cytosolic aequorin as the probe. Independently of the cell model or the employed probe, the cytosolic Ca(2+) increases, caused by agonist stimulation or full store depletion by drug treatment, were reduced or unchanged in cells expressing the PS mutations. Using aequorins, targeted to the endoplasmic reticulum or the Golgi apparatus, we here show that FAD-linked PS mutants lower the Ca(2+) content of intracellular stores. The phenomenon was most prominent in cells expressing PS2 mutants, and was observed also in cells expressing the non-pathogenic, "loss-of-function" PS2-D366A mutation. Taken as a whole, our findings, while confirming the capability of presenilins to modify Ca(2+) homeostasis, suggest a re-evaluation of the "Ca(2+) overload" hypothesis in AD and a new working hypothesis is presented.  相似文献   

10.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

11.
12.
Phosphatidic acid (PA) induces a biphasic Ca(2+) mobilization response in human neutrophils. The initial increase is due to the mobilization of Ca(2+) from intracellular stores, whereas the secondary increase is due to the influx of Ca(2+) from extracellular sources. The present investigation characterizes PA-induced Ca(2+) influx in neutrophils. Depolarization of neutrophils by 50 mM KCl enhanced PA-induced Ca(2+) influx, whereas verapamil, a Ca(2+) channel blocker, attenuated this response in a dose-dependent manner. These observations suggest that PA-induced Ca(2+) influx is mediated via verapamil-sensitive Ca(2+) channels. Stimulation of neutrophils with exogenous PA results in accumulation of endogenously generated PA with a time course similar to the effects of exogenous PA on Ca(2+) influx. Ethanol inhibited the accumulation of endogenous PA and calcium mobilization, indicating that activation of membrane phospholipase D plays a role in PA-mediated Ca(2+) influx. The results of this study suggest that exogenously added PA stimulates the generation of intracellular PA, which then mediates Ca(2+) influx through verapamil-sensitive Ca(2+) channels.  相似文献   

13.
Clonal GH4C1 rat pituitary cells are heterogeneous with respect to phorbol dibutyrate receptors (PDBu-R) and protein kinase C (PKC) content. GH cell PDBu-Rs can be separated into two categories based on Ca2(+)-modulation of receptor affinity. Approximately 70% of the cytosolic PDBu-Rs demonstrate Ca2(+)-sensitive receptor affinity and redistribute from the soluble to the particulate fraction in the presence of excess Ca2+. The other 30% of the receptors remain in the cytosol in the presence of excess Ca2+. Their receptor affinity is Ca2(+)-independent. Northern blot hybridization and immunoblot analysis showed that GH4C1 cells express Ca2(+)-independent epsilon-PKC as well as Ca2(+)-dependent alpha- and beta-PKCs. Cell lysis in Ca2+ caused the redistribution of greater than 95% of alpha- and beta-PKC to the particulate fraction, whereas approximately 90% of the epsilon-PKC remained in the cytosol. In contrast, brief treatment of GH cell cultures with PDBu or thyrotropin-releasing hormone caused redistribution of all three isozymes. Prolonged treatment with PDBu down-modulated all three isozymes but at different rates and to different extents. In contrast, prolonged thyrotropin-releasing hormone treatment selectively down-modulated epsilon-PKC. These results demonstrate that GH cells have both Ca2(+)-sensitive and -insensitive PKCs and PDBu-Rs and that both populations are regulated by agonists that control prolactin synthesis and secretion by these cells.  相似文献   

14.
Numerous studies show that intracellular calcium controls the migration rate of different mobile cell types. We studied migrating astrocytoma cells from two human cell lines, U-87MG and A172, in order to clarify the mechanisms by which calcium potentially influences cell migration. Using the wound-healing model to assay migration, we showed that four distinct components of migration could be distinguished: (i) a Ca(2+)/serum-dependent process; (ii) a Ca(2+)-dependent/serum-independent process; (iii) a Ca(2+)/serum-independent process; (iv) a Ca(2+)-independent/serum-dependent process. In U-87MG cells which lack a Ca(2+)-dependent/serum-independent component, we found that intracellular Ca(2+) oscillations are involved in Ca(2+)-dependent migration. Removing extracellular Ca(2+) greatly decreased the frequency of migration-associated Ca(2+) oscillations. Furthermore, non-selective inhibition of Ca(2+) channels by heavy metals such as Cd(2+) or La(3+) almost completely abolished changes in intracellular Ca(2+) observed during migration, indicating an essential role for Ca(2+) channels in the generation of these Ca(2+) oscillations. However, specific blockers of voltage-gated Ca(2+) channels, including nitrendipine, omega-conotoxin GVIA, omega-conotoxin MVIIC or low concentrations of Ni(2+) were without effect on Ca(2+) oscillations. We examined the role of internal Ca(2+) stores, showing that thapsigargin-sensitive Ca(2+) stores and InsP(3) receptors are involved in Ca(2+) oscillations, unlike ryanodine-sensitive Ca(2+) stores. Detailed analysis of the spatio-temporal aspect of the Ca(2+) oscillations revealed the existence of Ca(2+) waves initiated at the leading cell edge which propagate throughout the cell. Previously, we have shown that the frequency of Ca(2+) oscillations was reduced in the presence of inhibitory antibodies directed against beta3 integrin subunits. A simple model of a Ca(2+) oscillator is proposed, which may explain how the generation of Ca(2+) oscillations is linked to cell migration.  相似文献   

15.
Thrombin induces platelet activation through a variety of intracellular mechanisms, including Ca(2+) mobilization. The protein of the exocytotic machinery SNAP-25, but not VAMPs, is required for store-operated Ca(2+) entry, the main mechanism for Ca(2+) influx in platelets. Hence, we have investigated the role of the SNAP-25 and VAMPs in thrombin-induced platelet aggregation. Platelet stimulation with thrombin or selective activation of thrombin receptors PAR-1, PAR-4 or GPIb-IX-V results in platelet aggregation that, except for GPIb-IX-V receptor, requires Ca(2+) entry for full activation. Depletion of the intracellular Ca(2+) stores using pharmacological tools was unable to induce aggregation except when cytosolic Ca(2+) concentration reached a critical level (around 1.5 microM). Electrotransjection of cells with anti-SNAP-25 antibody reduced thrombin-evoked platelet aggregation, while electrotransjection of anti-VAMP-1, -2 and -3 antibody had no effect. These findings support a role for SNAP-25 but not VAMP-1, -2 and -3 in platelet aggregation, which is likely mediated by the regulation of Ca(2+) mobilization in human platelets.  相似文献   

16.
Upon contact with airway epithelial cells, bacterial products activate Ca(2+) fluxes that are required for induction of NF-kappaB-dependent gene expression. TLR2 is apically displayed on airway cells, making it a likely transducer linking bacterial stimuli and kinases that affect Ca(2+) release. Using biochemical and genetic approaches, we demonstrate that TLR2 ligands stimulate release of Ca(2+) from intracellular stores by activating TLR2 phosphorylation by c-Src, and recruiting PI3K and phospholipase Cgamma to affect Ca(2+) release through inositol (1,4,5) trisphosphate receptors. In the absence of TLR2, murine macrophages as well as airway cells do not generate Ca(2+) fluxes or induce proinflammatory signaling. Thus, Ca(2+) participates as a second messenger in TLR2-dependent signaling and provides another target to modulate proinflammatory responses to bacterial infection.  相似文献   

17.
Elevations in intracellular Ca(2+) concentration and calpain activity are common early events in cellular injury, including that of hepatocytes. Atrial natriuretic peptide is a circulating hormone that has been shown to be hepatoprotective. The aim of this study was to examine the effects of atrial natriuretic peptide on potentially harmful elevations in cytosolic free Ca(2+) and calpain activity induced by extracellular ATP in rat hepatocytes. We show that atrial natriuretic peptide, through protein kinase G, attenuated both the amplitude and duration of ATP-induced cytosolic Ca(2+) rises in single hepatocytes. Atrial natriuretic peptide also prevented stimulation of calpain activity by ATP, taurolithocholate, or Ca(2+) mobilization by thapsigargin and ionomycin. We therefore investigated the cellular Ca(2+) handling mechanisms through which ANP attenuates this sustained elevation in cytosolic Ca(2+). We show that atrial natriuretic peptide does not modulate the release from or re-uptake of Ca(2+) into intracellular stores but, through protein kinase G, both stimulates plasma membrane Ca(2+) efflux from and inhibits ATP-stimulated Ca(2+) influx into hepatocytes. These findings suggest that stimulation of net plasma membrane Ca(2+) efflux (to which both Ca(2+) efflux stimulation and Ca(2+) influx inhibition contribute) is the key process through which atrial natriuretic peptide attenuates elevations in cytosolic Ca(2+) and calpain activity. Moreover we propose that plasma membrane Ca(2+) efflux is a valuable, previously undiscovered, mechanism through which atrial natriuretic peptide protects rat hepatocytes, and perhaps other cell types, against Ca(2+)-dependent injury.  相似文献   

18.
A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) due to Ca(2+) release from intracellular Ca(2+) stores and Ca(2+) influx through plasmalemmal Ca(2+) channels plays a critical role in mitogen-mediated cell growth. Depletion of intracellular Ca(2+) stores triggers capacitative Ca(2+) entry (CCE), a mechanism involved in maintaining Ca(2+) influx and refilling intracellular Ca(2+) stores. Transient receptor potential (TRP) genes have been demonstrated to encode the store-operated Ca(2+) channels that are activated by Ca(2+) store depletion. In this study, we examined whether CCE, activity of store-operated Ca(2+) channels, and human TRP1 (hTRP1) expression are essential in human pulmonary arterial smooth muscle cell (PASMC) proliferation. Chelation of extracellular Ca(2+) and depletion of intracellularly stored Ca(2+) inhibited PASMC growth in media containing serum and growth factors. Resting [Ca(2+)](cyt) as well as the increases in [Ca(2+)](cyt) due to Ca(2+) release and CCE were all significantly greater in proliferating PASMC than in growth-arrested cells. Consistently, whole cell inward currents activated by depletion of intracellular Ca(2+) stores and the mRNA level of hTRP1 were much greater in proliferating PASMC than in growth-arrested cells. These results suggest that elevated [Ca(2+)](cyt) and intracellularly stored [Ca(2+)] play an important role in pulmonary vascular smooth muscle cell growth. CCE, potentially via hTRP1-encoded Ca(2+)-permeable channels, may be an important mechanism required to maintain the elevated [Ca(2+)](cyt) and stored [Ca(2+)] in human PASMC during proliferation.  相似文献   

19.
The interaction between the EF-hand Ca(2+)-binding protein calmyrin and presenilin 2 (PS2) has been suggested to play a role in Alzheimer's disease (AD). We now report that calmyrin binds specifically endogenous PS2 and not PS1. However, binding appears to be Ca(2+)-independent and calmyrin does not exhibit a Ca(2+)-dependent translocation to intracellular membranes as demonstrated in a Ca(2+)-myristoyl switch assay. Moreover, calmyrin is only present at very low levels in brain areas associated with the onset of AD. In rat, forebrain calmyrin is localized only in a subset of principal neurons, similarly as in human forebrain. Finally, subcellular fractionation demonstrates only a limited overlap of calmyrin and PS2 at neuronal membranes. We therefore conclude that calmyrin will not contribute significantly as a Ca(2+)-sensor that transduces Ca(2+)-signaling events to PS2 in forebrain.  相似文献   

20.
Ryanodine receptors (RyRs) amplify intracellular Ca(2+) signals by massively releasing Ca(2+) from intracellular stores. Exaggerated chronic Ca(2+) release can trigger cellular apoptosis underlying a variety of neurodegenerative diseases. Aberrant functioning of presenilin-1 (PS1) protein instigates Ca(2+)-dependent apoptosis, providing a basis for the "calcium hypothesis" of Alzheimer's disease (AD). To get insight into this problem, we hypothesized that the previously reported physical interaction between RyR and PS1 modulates functional properties of the RyR. We generated a soluble cytoplasmic N-terminal fragment of PS1 comprising the first 82 amino acid (PS1 NTF(1-82)), the candidate for interaction with putative cytoplasmic modulatory sites of the RyR, and studied its effect on single channel currents of mouse brain RyRs incorporated in lipid bilayers. PS1 NTF(1-82) strongly increased both mean currents (EC(50)=12nM, Hill coefficient (n(H)) approximately 1) and open probability for higher sublevels for single RyR channels (EC(50)=7nM, n(H) approximately 2). Bell-shaped Ca(2+)-activation curve remained unchanged, suggesting that PS1 NTF(1-82) allosterically potentiates RyRs, but that the channel still requires Ca(2+) for activation. Corroborating such an independent mechanism, the RyR potentiation by PS1 NTF(1-82) was overridden by receptor desensitization at high [Ca(2+)] (pCa>5). This potentiation of RyR by PS1 NTF(1-82) reveals a new mechanism of physiologically relevant PS1-regulated Ca(2+) release from intracellular stores, which could be alternative or additional to recently reported intracellular Ca(2+) leak channels formed by PS1 holoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号