首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes.  相似文献   

2.

Background  

The related proteins Boi1 and Boi2, which appear to promote polarized growth in S. cerevisiae, both contain a PH (pleckstrin homology) and an SH3 (src homology 3) domain. Previously, we gained evidence that a PH domain-bearing segment of Boi1, which we call Boi1-PH, is sufficient and necessary for function. In the current study, we investigate the binding of Boi1's PH domain to the acidic phospholipids PIP2 (phosphatidylinositol-4,5-bisphosphate) and PS (phosphatidylserine).  相似文献   

3.

Background  

The recently sequenced genome of Lactobacillus helveticus DPC4571 [1] revealed a dairy organism with significant homology (75% of genes are homologous) to a probiotic bacteria Lb. acidophilus NCFM [2]. This led us to hypothesise that a group of genes could be determined which could define an organism's niche.  相似文献   

4.

Aims

This work was performed to characterize new secondary metabolites with neuraminidase (NA) inhibitory activity from marine actinomycete strains.

Methods and Results

An actinomycete strain IFB‐A01, capable of producing new NA inhibitors, was isolated from the gut of shrimp Penasus orientalis and identified as Streptomyces seoulensis according to its 16S rRNA sequence (over 99% homology with that of the standard strain). Repeated chromatography of the methanol extract of the solid‐substrate culture of S. seoulensis IFB‐A01 led to the isolation of streptoseolactone ( 1 ), and limazepines G ( 2 ) and H ( 3 ). The structures of 1 – 3 were determined by a combination of IR, ESI‐MS, 1D (1H and 13C NMR, and DEPT) and 2D NMR experiments (HMQC, HMBC, 1H‐1H COSY and NOESY). Compounds 1 – 3 showed significant inhibition on NA in a dose‐dependent manner with IC50 values of 3·92, 7·50 and 7·37 μmol l?1, respectively.

Conclusions

This is the first report of two new ( 1 and 2 ) and known ( 3 , recovered as a natural product for the first time in the work) NA inhibitors from the marine‐derived actinomycete S. seoulensis IFB‐A01.

Significance and Impact of the Study

The three natural NA inhibitors maybe of value for the development of drug(s) necessitated for the treatment of viral infections.  相似文献   

5.

Background  

In the process of developing a microplate-based growth assay, we discovered that our test organism, a native E. coli isolate, displayed very uniform doubling times (τ) only up to a certain threshold cell density. Below this cell concentration (≤ 100 -1,000 CFU mL-1 ; ≤ 27-270 CFU well-1) we observed an obvious increase in the τ scatter.  相似文献   

6.

Background  

aaTHEP1, the gene product of aq_1292 from Aquifex aeolicus, shows sequence homology to proteins from most thermophiles, hyperthermophiles, and higher organisms such as man, mouse, and fly. In contrast, there are almost no homologous proteins in mesophilic unicellular microorganisms. aaTHEP1 is a thermophilic enzyme exhibiting both ATPase and GTPase activity in vitro. Although annotated as a nucleotide kinase, such an activity could not be confirmed for aaTHEP1 experimentally and the in vivo function of aaTHEP1 is still unknown.  相似文献   

7.

Background  

Based on the recently sequenced gene coding for the Trypanosoma evansi (T. evansi) RoTat 1.2 Variable Surface Glycoprotein (VSG), a primer pair was designed targeting the DNA region lacking homology to other known VSG genes. A total of 39 different trypanosome stocks were tested using the RoTat 1.2 based Polymerase Chain Reaction (PCR).  相似文献   

8.
9.
10.

Background  

The Streptococcus pyogenes or Group A Streptococcus (GAS) genome encodes three ABC transporters, namely, FtsABCD, MtsABC, and HtsABC, which share homology with iron transporters. MtsABC and HtsABC are believed to take up ferric (Fe3+) and manganese ions and heme, respectively, while the specificity of FtsABCD is unknown.  相似文献   

11.

Background  

Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio.  相似文献   

12.

Background  

ATP binding cassette (ABC) transporter secretes the protein through inner and outer membranes simultaneously in gram negative bacteria. Thermostable lipase (TliA) of Pseudomonas fluorescens SIK W1 is secreted through the ABC transporter. TliA has four glycine-rich repeats (GGXGXD) in its C-terminus, which appear in many ABC transporter-secreted proteins. From a homology model of TliA derived from the structure of P. aeruginosa alkaline protease (AprA), lipase ABC transporter domains (LARDs) were designed for the secretion of fusion proteins.  相似文献   

13.

Aims

Dekkera bruxellensis and Pichia guilliermondii are contaminating yeasts in wine due to the production of phenolic aromas. Although the degradation pathway of cinnamic acids, precursors of these phenolic compounds has been described in D. bruxellensis, no such pathway has been described in P. guilliermondii.

Methods and Results

A molecular and physiological characterization of 14 D. bruxellensis and 15 P. guilliermondii phenol‐producing strains was carried out. Both p‐coumarate decarboxylase (CD) and vinyl reductase (VR) activities, responsible for the production of volatile phenols, were quantified and the production of 4‐vinylphenol and 4‐ethylphenol were measured. All D. bruxellensis and some P. guilliermondii strains showed the two enzymatic activities, whilst 11 of the 15 strains of this latter species showed only CD activity and did not produce 4‐EP in the assay conditions. Furthermore, PCR products obtained with degenerated primers showed a low homology with the sequence of the gene for a phenyl acrylic acid decarboxylase activity described in Saccharomyces cerevisiae.

Conclusions

D. bruxellensis and P. guilliermondii may share a similar metabolic pathway for the degradation of cinnamic acids.

Significance and Impact of the Study

This is the first work that analyses the CD and VR activities in P. guilliermondii, and the results suggest that within this species, there are differences in the metabolization of cinnamic acids.  相似文献   

14.

Background  

Current evidence suggests that lepidopteran baculoviruses may be divided into two phylogenetic groups based on their envelope fusion proteins. One group utilizes gp64, a low pH-dependent envelope fusion protein, whereas the other employs a protein family (e.g. LD130 in the Lymantria dispar nucleopolyhedrovirus) unrelated to gp64, but that is also low pH-dependent. Database searches with members of the LD130 protein family often record significant levels of homology to envelope proteins from a number of insect retrovirus-like transposable elements of the gypsy class. In this report, the significance of the homology between these two types of envelope proteins is analyzed.  相似文献   

15.

Background  

Oligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2°C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life.  相似文献   

16.

Background  

Much of thePlasmodium falciparumgenome encodes hypothetical proteins with limited homology to other organisms. A lack of robust tools for genetic manipulation of the parasite limits functional analysis of these hypothetical proteins and other aspects of thePlasmodiumgenome. Transposon mutagenesis has been used widely to identify gene functions in many organisms and would be extremely valuable for functional analysis of thePlasmodiumgenome.  相似文献   

17.

Background  

Like many other pathogens, enterohaemorrhagic and enteropathogenic strains of Escherichia coli employ a type-III secretion system to translocate bacterial effector proteins into host cells, where they then disrupt a range of cellular functions. This system is encoded by the locus for enterocyte effacement. Many of the genes within this locus have been assigned names and functions through homology with the better characterised Ysc-Yop system from Yersinia spp. However, the functions and homologies of many LEE genes remain obscure.  相似文献   

18.

Background  

Modelling proteins with multiple domains is one of the central challenges in Structural Biology. Although homology modelling has successfully been applied for prediction of protein structures, very often domain-domain interactions cannot be inferred from the structures of homologues and their prediction requiresab initiomethods. Here we present a new structural prediction approach for modelling two-domain proteins based on rigid-body domain-domain docking.  相似文献   

19.

Background  

Burkholderia pseudomallei is a saprophyte in tropical environments and an opportunistic human pathogen. This versatility requires a sensing mechanism that allows the bacterium to respond rapidly to altered environmental conditions. We characterized a two-component signal transduction locus from B. pseudomallei 204, mrgR and mrgS, encoding products with extensive homology with response regulators and histidine protein kinases of Escherichia coli, Bordetella pertussis, and Vibrio cholerae.  相似文献   

20.

Background  

Currently, there exists tens of different microbial and eukaryotic metabolic reconstructions (e.g., Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis) with many more under development. All of these reconstructions are inherently incomplete with some functionalities missing due to the lack of experimental and/or homology information. A key challenge in the automated generation of genome-scale reconstructions is the elucidation of these gaps and the subsequent generation of hypotheses to bridge them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号