首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor (TNF) is a 17,000-Da protein which is produced by mononuclear cells upon exposure to endotoxin. Increases in adherence, phagocytosis, hydrogen peroxide release, and lysozyme secretion have been demonstrated after prolonged incubation of human neutrophils with TNF. In this study, the ability of highly purified recombinant human TNF to modulate neutrophil responses to soluble stimuli was evaluated. Tumor necrosis factor alone (0.1 to 10,000 units/ml) failed to induce neutrophil superoxide anion (O2-) production, granule release, or aggregation when incubated for up to 25 min at 37 degrees C. TNF did, however, stimulate a significant time-, dose-, and temperature-dependent increase in neutrophil F-actin content. Although exposure of neutrophils to TNF alone caused no superoxide anion production, it enhanced the O2- production in response to the chemotactic peptide, f-methionyl-leucyl-phenylalanine (FMLP) or the tumor promotor, phorbol myristate acetate, by as much as 278%. The enhancement was time-, dose-, and temperature-dependent and was due to a more rapid initial rate of O2- production. The TNF enhancement of FMLP-induced O2- production was blocked when an anti-TNF monoclonal antibody 241-1H11, is present during the preincubation period. TNF preincubation also enhanced FMLP-induced lysozyme release, but had no effect on aggregation and actin polymerization by FMLP. The kinetics of NADPH oxidase activation by arachidonic acid was unaltered by TNF. These results indicate that brief exposures to recombinant human TNF are able to enhance or prime the neutrophil oxidative burst in response to a second stimulus.  相似文献   

2.
Although the lung is known to be a major site of neutrophil margination, the anatomic location of these sequestered cells within the lung is controversial. To determine the site of margination and the kinetics of neutrophil transit through the pulmonary microvasculature, we infused fluorescein isothiocyanate-labeled canine neutrophils into the pulmonary arteries of 10 anesthetized normal dogs and made fluorescence videomicroscopic observations of the subpleural pulmonary microcirculation through a window inserted into the chest wall. The site of fluorescent neutrophil sequestration was exclusively in the pulmonary capillaries with a total of 951 labeled cells impeded in the capillary bed for a minimum of 2 s. No cells were delayed in the arterioles or venules. Transit times of individual neutrophils varied over a wide range from less than 2 s to greater than 20 min with an exponential distribution skewed toward rapid transit times. These observations indicate that neutrophil margination occurs in the pulmonary capillaries with neutrophils impeded for variable periods of time on each pass through the lung. The resulting wide distribution of transit times may determine the dynamic equilibrium between circulating and marginated neutrophils.  相似文献   

3.
The effect of ATP on intracellular Ca2+ levels and elastase secretion in isolated normal human peripheral blood neutrophils was investigated as was its in vivo effect on lung resistance and mucous secretion. ATP (10(-5) M) increased [Ca2+]i from 61 +/- 3 to 165 +/- 15 nM in nonactivated neutrophils; elastase secretion was increased by 40% from nonactivated neutrophils but was unaffected in fMLP (10(-5) M) activated cells. Instillation of ATP (10(-5) and 10(-3) M) into the airways of brown Norway rats increased both lung resistance and secretion. These findings suggest that aerosolization of ATP into the cystic fibrosis-affected bronchial tree might be hazardous in terms of enhancement of parenchymal damage, which would result from neutrophil elastase release, and in terms of impaired respiratory lung function.  相似文献   

4.
The occurrence of neutrophils at the pannus‐cartilage border is an important phenomenon for understanding the pathogenesis of rheumatoid arthritis (RA). Matrix metalloproteinases (MMPs) are predominant enzymes responsible for the cartilage degradation. The present article studied the expression of CD147 on neutrophils and its potential role in neutrophil chemotaxis, MMPs production and the invasiveness of fibroblast‐like synoviocytes (FLS). The results of flow cytometry revealed that the mean fluorescence intensity of CD147 expression on neutrophils of peripheral blood from RA patients was higher than that in healthy individual. The potential role of CD147 in cyclophilin A (CyPA)‐mediated cell migration was studied using chemotaxis assay and it was found that the addition of anti‐CD147 antibody significantly decreased the chemotactic index of the neutrophils. Significantly elevated release and activation of MMPs were seen in the co‐culture of neutrophil and FLS compared with cultures of the cells alone. An increased number of cells invading through the filters in the invasion assays were also observed in the co‐cultured cells. The addition of anti‐CD147 antibody had some inhibitory effect, not only on MMP production but also on cell invasion in the co‐culture model. Our study demonstrates that the increased expression of CD147 on neutrophils in RA may be responsible for CyPA‐mediated neutrophil migration into the joints, elevated MMPs secretion and cell invasion of synoviocytes, all of which may contribute to the cartilage invasion and bone destruction of RA. Better knowledge of these findings will hopefully provide a new insight into the pathogenesis of RA.  相似文献   

5.
Neutrophils play an integral role in innate immunity by undergoing degranulation and respiratory burst in response to inflammatory stimuli. Rac2, a monomeric GTP-binding protein, has been shown to be involved in several neutrophil functions, including primary granule release and superoxide (O(2)(-.) generation. We hypothesized that Rac2 is a common signalling molecule required for primary granule translocation and maximal O(2)(-.) production. Using bone marrow neutrophils from Rac2 knockout (KO) mice and wild type C57Bl/6 mice, we found that primary granule elastase and myeloperoxi dase release were absent in Rac2 KO neutrophils upon chemoattractant stimulation. Rac2 KO neutrophils also failed to produce maximal levels of extracellular O(2(-.) generation in response to phorbol myristate acetate (PMA). Although PMA was ineffective at eliciting primary granule mediator release, it induced secondary granule exocytosis in both WT and Rac2 KO neutrophils. Thus, the signalling pathway leading to primary granule release utilized Rac2, which was also necessary for full activation of O(2)(-.) generation in stimulated neutrophils. These findings indicate that O(2)(-.) release and secondary granule secretion may use protein kinase C (PKC) - dependent pathways, whereas primary granule exocytosis appears to rely on PKC-independent signalling events. These findings shed light on possible signalling mechanisms involved in granule secretion from activated neutrophils responding to different stimuli.  相似文献   

6.
Linkage between neutrophil degranulation and calcium discharge   总被引:1,自引:0,他引:1  
Calcium flux across organelle and plasma membranes is an important event in neutrophil activation. We measured calcium discharge into the media from neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine after treatment with cytochalasin b. Cytochalasin markedly potentiated calcium efflux from stimulated neutrophils, and similarly promoted release of lysosomal enzymes into the media. Colchicine neither reproduced nor modified the cytochalasin effect. Neutrophil cytoplasts discharged very little calcium in response to stimulation, and discharge was not significantly altered by cytochalasin b. These findings indicate that neutrophil degranulation is accompanied by efflux of calcium into the media, and suggest that the neutrophil granules constitute a source of mobilizable calcium which could be used to modify the extracellular microenvironment.  相似文献   

7.
Neutrophils from patients with chronic granulomatous disease (CGD) fail to produce a significant oxidative burst following stimulation. We have evaluated the use of flow cytometry and the dye 2',7'-dichlorofluorescein diacetate (DCF) for routine screening for deficiencies of neutrophil oxidative burst. A range for DCF fluorescence for phorbol myristate acetate stimulated and non-stimulated neutrophils was established based on data from 52 healthy adults. Samples from three patients with suspected neutrophil dysfunction, three patients with X-linked CGD, and one patient with autosomal recessive (AR) CGD were evaluated with both the DCF assay and the quantitative nitroblue tetrazolium dye reduction (NBT) test. For the DCF test, the ratio of mean fluorescence intensity of stimulated to non-stimulated neutrophils was less than 5 for CGD patients and from 16 to greater than 50 for healthy individuals. With the DCF test, two populations of neutrophils could be identified in samples from four carriers of X-linked CGD, although two carriers of AR CGD had NBT and DCF results in the normal range. Our data suggest the DCF test is a sensitive and convenient method for detecting CGD.  相似文献   

8.
Inflammation plays a critical role in lung disease progression in cystic fibrosis (CF). This inflammatory process is dominated by a neutrophil influx in the airways. To determine whether the accumulation of neutrophils in the airways of CF patients is associated with an altered function, we analyzed the capacity of neutrophils isolated from the lung compartment and the blood to release the major neutrophil pro- and anti-inflammatory cytokines IL-8 and IL-1-receptor antagonist (ra) spontaneously and in the presence of LPS. Comparison of cytokine production by blood neutrophils from CF patients and from control subjects showed significantly increased IL-8 and decreased IL-1ra release by CF neutrophils. Comparison of cytokine production by airway and blood neutrophils from CF patients also documented distinct profiles: the spontaneous release of IL-8 and IL-1ra by airway neutrophils was significantly higher than that from blood neutrophils. Culture in the presence of LPS failed to further enhance cytokine production. Analysis of the effect of dexamethasone confirmed the difference in the responsiveness of lung and blood neutrophils in CF. Used at a concentration effective in reducing IL-8 production by blood neutrophils, dexamethasone (10(-6) M) was unable to repress secretion of IL-8 by airway neutrophils. In addition, comparison of cytokine production by airway neutrophils from children with CF and children with dyskinetic cilia syndrome also documented distinct profiles of secretion. These results are consistent with a dysregulated cytokine production by lung and blood neutrophils in CF. They provide support to the hypothesis that not only the CF genotype but also the local environment may modify the functional properties of the neutrophils.  相似文献   

9.
We present methods to study the effect of phenol soluble modulins (PSMs) and other toxins produced and secreted by Staphylococcus aureus on neutrophils. To study the effects of the PSMs on neutrophils we isolate fresh neutrophils using density gradient centrifugation. These neutrophils are loaded with a dye that fluoresces upon calcium mobilization. The activation of neutrophils by PSMs initiates a rapid and transient increase in the free intracellular calcium concentration. In a flow cytometry experiment this rapid mobilization can be measured by monitoring the fluorescence of a pre-loaded dye that reacts to the increased concentration of free Ca2+. Using this method we can determine the PSM concentration necessary to activate the neutrophil, and measure the effects of specific and general inhibitors of the neutrophil activation.To investigate the expression of the PSMs in the intracellular space, we have constructed reporter fusions of the promoter of the PSMα operon to GFP. When these reporter strains of S. aureus are phagocytosed by neutrophils, the induction of expression can be observed using fluorescence microscopy.  相似文献   

10.
A novel method for quantitating secretion is described based on measurements of the cellular uptake of the fluorescent aminoacridine dye quinacrine into low-pH secretory granules. The quinacrine fluorescence remaining in the medium was found to decrease after incubation with increasing numbers of the 2H3 rat basophilic leukemia line. This depletion of dye from the medium decreased after a secretory stimulus. Assuming that quinacrine partitions according to mass action, a quantitative model was derived to allow calculation of the percent secretion from dye uptake data. A good correlation was obtained when the values for the percent secretion determined by the quinacrine uptake method were compared with secretion measured by release of the granule enzyme beta-glucuronidase.  相似文献   

11.
Recent observations support an active role for the vascular endothelial cell in the induction and evolution of the inflammatory response. Since prior studies suggested that cultured bovine endothelial cells express high affinity binding sites for the neutrophil chemotactic oligopeptide formyl methionyl-leucyl-phenylalanine (f-Met-Leu-Phe), we sought to further characterize the interaction between formyl peptide chemoattractants and human vascular endothelial cells. Cultured human umbilical vein endothelial cells and peripheral blood neutrophils specifically bound f-Met-Leu-[3H]Phe, whereas specific binding to cultured fibroblasts, smooth muscle, and epithelial cells was negligible. Endothelial cells expressed 3.6 +/- 0.7 X 10(5) binding sites/cell with a Kd of 210 +/- 31 nM. Although the hexapeptide formyl norleucyl-leucyl-phenylalanyl-norleucyl-tyrosyl-lysine (f-Nle-Leu-Phe-Nle-Tyr-Lys) and the tetrapeptide f-Met-Leu-Phe-Lys completed with f-Met-Leu-[3H]Phe for binding to endothelial cells, specific binding of 125I-f-Nl-Leu-Phe-Tyr-Lys or f-Met-Leu-Phe-Lys-fluorescein to endothelial cells was not observed, suggesting that steric constraints on formyl peptide binding differ between endothelial cells and leukocytes. At 37 degrees C, cell-associated f-Met-Leu-[3H]Phe greatly exceeded that bound at 0 degrees C and was incorporated predominantly into a nondisplaceable compartment. Release of f-Met-Leu-[3H]Phe or radioactive breakdown products from this compartment was time- and temperature-dependent with a t1/2 of approximately equal to 20 min at 37 degrees C. Resolution of the radioactive products released from f-Met-Leu-[3H]Phe-loaded endothelial cells by thin layer chromatography indicated that greater than or equal to 57% of the released material co-migrated with intact f-Met-Leu-[3H]Phe. Degradative release was blocked by agents that interfere with lysosomal acidification. The radioactive material released from f-Met-Leu-[3H]Phe-loaded endothelial cells bound specifically to neutrophils. This binding was inhibited 50.2 +/- 6.4% by a greater than or equal to 10(3)-fold excess of nonradioactive f-Met-Leu-Phe whereas binding of authentic f-Met-Leu-[3H]Phe was inhibited 89.4 +/- 3.0%. Supernatant obtained from f-Met-Leu-[3H]Phe-loaded endothelial cells elicited a rise in neutrophil cytosolic free calcium ([Ca2+]i) measured by quin2 fluorescence. The change in neutrophil [Ca2+]i depended on ligand binding to the neutrophil formyl peptide receptor since endothelial supernatants were devoid of activity in the presence of the f-Met-Leu-Phe antagonist, tert-butoxycarbonyl-Phe-Leu-Phe-Leu-Phe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Using cultured human umbilical cord vein endothelial cells and human blood neutrophils, the interaction between neutrophils and endothelial cells, in vitro, was studied. The aim of the study was to examine whether a respiratory burst stimulation by neutrophils would be observed by neutrophil/endothelial cell interaction and whether the respiratory burst stimulation of neutrophils by endothelial cells could be enhanced by lipopolysaccharide stimulation of neutrophils. The second aim was whether such an effect, or secretion of elastase, could cause an endothelial cell damage in vitro. Chemiluminescence as an indicator of oxygen-derived metabolites produced by neutrophils, elastase release by neutrophils, and endothelial cell damage, based on111 In-oxine release from labelled endothelial cells, were measured simultaneously. The present investigation demonstrates that neutrophils can be directly stimulated by endothelial cells. A further amplification of this process following lipopolysaccharide priming up to 10 ng/ml blood could be demonstrated. A slight endothelial cell damage occurs following neutrophil stimulation, although elastase secretion does not increase during interaction between neutrophils and endothelial cells. These results raise the possibility that oxygen-derived metabolites rather than elastase contribute to an endothelial cell damage which might occur in conditions such as endotoxin-induced adult respiratory distress syndrome.  相似文献   

13.
During an inflammatory response, neutrophils migrate to the site of infection where they can kill invading pathogens by phagocytosis, secretion of anti-microbicidal mediators or the release of neutrophil extracellular traps (NETs). NETs are specialized anti-microbial structures comprised of decondensed chromatin decorated with microbicidal agents. Increased amount of NETs have been found in patients suffering from the chronic lung inflammatory disease cystic fibrosis, correlating with increased severity of pulmonary obstruction. Furthermore, acute lung inflammation during influenza A infection is characterized by a massive influx of neutrophils into the lung. The role of NETs during virus-mediated lung inflammation is unknown. Peptidylarginine deiminase 4 (PAD4)-mediated deimination of histone H3 and H4 is required for NET formation. Therefore, we generated a PAD4-deficient mouse strain that has a striking inability to form NETs. These mice were infected with influenza A/WSN, and the disease was monitored at the level of leukocytic lung infiltration, lung pathology, viral replication, weight loss and mortality. PAD4 KO fared comparable to WT mice in all the parameters tested, but they displayed slight but statistically different weight loss kinetics during infection that was not reflected in enhanced survival. Overall, we conclude that PAD4-mediated NET formation is dispensable in a mouse model of influenza A infection.  相似文献   

14.
The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88 −/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes.  相似文献   

15.
Secretion by neutrophils contributes to acute inflammation following injury or infection. Vimentin has been shown to be important for secretion by neutrophils but little is known about its dynamics during secretion, which is regulated by cyclin-dependent kinase 5 (Cdk5). In this study, we sought to examine the vimentin dynamics and its potential regulation by Cdk5 during neutrophil secretion. We show that vimentin is a Cdk5 substrate that is specifically phosphorylated at Ser56. In response to neutrophil stimulation with GTP, vimentin Ser56 was phosphorylated and colocalized with Cdk5 in the cytoplasmic compartment. Vimentin pSer56 and Cdk5 colocalization was consistent with coimmunoprecipitation from stimulated cells. Vimentin Ser56 phosphorylation occurred immediately after stimulation, and a remarkable increase in phosphorylation was noted later in the secretory process. Decreased GTP-induced vimentin Ser56 phosphorylation and secretion resulted from inhibition of Cdk5 activity by roscovitine or olomoucine or by depletion of Cdk5 by siRNA, suggesting that GTP-induced Cdk5-mediated vimentin Ser56 phosphorylation may be related to GTP-induced Cdk5-mediated secretion by neutrophils. Indeed, inhibition of vimentin Ser56 phosphorylation led to a corresponding inhibition of GTP-induced secretion, indicating a link between these two events. While fMLP also induced vimentin Ser56 phosphorylation, such phosphorylation was unaffected by roscovitine, which nonetheless, inhibited secretion, suggesting that Cdk5 regulates fMLP-induced secretion via a mechanism independent of Cdk5-mediated vimentin Ser56 phosphorylation. These findings demonstrate the distinct involvement of Cdk5 in GTP- and fMLP-induced secretion by neutrophils, and support the notion that specific targeting of Cdk5 may serve to inhibit the neutrophil secretory process.  相似文献   

16.
Surfactant protein D (SP-D) and neutrophils participate in the early innate immune response to influenza A virus (IAV) infection. SP-D increases neutrophil uptake of IAV and modulates neutrophil respiratory burst responses to IAV; however, neutrophil proteases have been shown to degrade SP-D, and human neutrophil peptide defensins bind to SP-D and can cause precipitation of SP-D from bronchoalveolar lavage fluid (BALF). BALF has significant antiviral activity against IAV. We first added neutrophils to BALF during incubation with IAV. Addition of neutrophils to BALF caused significantly greater clearance of IAV from culture supernatants than from BALF alone, and this effect was significantly more pronounced when neutrophils were activated during incubation with the virus. In contrast, if activated neutrophils were incubated with BALF before addition of virus, they reduced antiviral activity of BALF. This effect correlated with depletion of SP-D from BALF. Activation of neutrophils with agonists that induce primary granule release (including release of human neutrophil peptide defensins) caused SP-D depletion, but activation with PMA, which causes only secondary granule release, did not. The ability of activated neutrophils to deplete SP-D from BALF was partially, but not fully, corrected with protease inhibitors but was unaffected by inhibition of neutrophil respiratory burst responses. These results suggest that chronic neutrophilic inflammation (e.g., as in chronic smoking or cystic fibrosis) may reduce SP-D levels and predispose to IAV infection. In contrast, acute inflammation, as occurs in the early phase of IAV infection, may promote neutrophil-mediated viral clearance.  相似文献   

17.
N-formylated chemotactic peptide stimulation of human neutrophils initiates a number of cellular processes, such as lysosomal enzyme release and superoxide anion production, that are indicative of the events of neutrophil activation during the acute inflammatory response in disease. This study characterizes a newly recognized neutrophil activation event, N-formylated chemotactic peptide-stimulated fluid pinocytosis in human neutrophils, using a novel flow cytometric assay for this activity. Fluid pinocytosis was found to be inhibited by acidic pH and low temperature but could be enhanced by cytochalasin B treatment or surface adherence by neutrophils. The activity measured by this new assay of fluid pinocytosis appears to be separate and distinct from lysosomal enzyme release and receptor-mediated adsorptive endocytosis in neutrophils. The physiologic significance of N-formylated chemotactic peptide-stimulated fluid pinocytosis is not known, but a possible relationship to neutrophil locomotion is discussed.  相似文献   

18.
Human heat shock protein Hsp70 was experimentally inserted into polyelectrolyte microcapsules. Encapsulated recombinant Hsp70 was studied in terms of its effects on neutrophil apoptosis, the production of reactive oxygen species, and the secretion of tumor necrosis factor alpha by promonocytic THP-1 cells. It was found that encapsulated Hsp70 effectively inhibits neutrophil apoptosis, unlike free exogenous protein used in solution. In THP-1 cells, encapsulated and free Hsp70 reduced LPS-induced tumor necrosis factor alpha production with a similar efficiency. Encapsulated Hsp70 reduces LPS-induced reactive oxygen species production by neutrophils in the course of its release from the microcapsules but not as much as free Hsp70. Thus, the polyelectrolyte microcapsules can be used as containers for the effective delivery of Hsp70 to neutrophils and monocytes to significantly improve the functioning of the innate immune system.  相似文献   

19.
Acute inflammatory stimuli rapidly mobilize neutrophils from the bone marrow by shortening postmitotic maturation time and releasing younger neutrophils; however, the kinetics of this change in maturation time remains unknown. We propose a kinetic model that examines the rate of change in neutrophil average age at exit from the bone marrow during active mobilization to quantify this response and use this model to examine the temporal profile of late neutrophil phenotypic maturation. Total and CD10(-)/CD16(low) circulating neutrophils were quantified in cardiac surgery patients during extracorporeal circulation (ECC). Net growth in the circulating neutrophil pool occurred during the procedural (0.04 +/- 0.02 x 10(9) x l(-1) x min(-1)), warming (0.14 +/- 0.02 x 10(9) x l(-1) x min(-1)), and weaning (0.12 +/- 0.06 x 10(9) x l(-1) x min(-1)) phases of ECC. When applied to our differential equation mathematical model, these results predict that neutrophil average age at exit from the bone marrow decreased continually during ECC, resulting in average neutrophil release 8.44 +/- 2.20 h earlier during the weaning phase than at the beginning of ECC sampling. Modeling of concurrent changes in CD10(-)/CD16(low) neutrophil numbers indicates that CD10 expression is directly related to neutrophil mean age and predicts that the proportion of mobilizable postmitotic neutrophils that are CD10(+) increases from 64 to 81% during these sampled 8.4 h of maturation.  相似文献   

20.
Thrombin is a procoagulant and proinflammatory molecule in vivo. In vitro, thrombin has been shown to induce endothelial activation, notably IL-8 secretion and adhesion molecule expression. In this study, we showed that thrombin may induce a new cascade leading from acute to chronic inflammation. Thrombin was able to induce the production of both IL-6 and monocyte chemotactic protein-1 (MCP-1) by HUVEC independently of IL-1alphabeta and TNF-alpha. Addition of physiological concentrations of exogenous soluble IL-6Ralpha (sIL-6Ralpha) to thrombin-activated HUVEC was sufficient to increase the amounts of MCP-1 produced, but not those of IL-8. These effects could be blocked by anti-IL-6 or anti-sIL-6Ralpha blocking mAb, demonstrating the existence of an autocrine loop of MCP-1 secretion, involving the IL-6/IL-6Ralpha/gp130 complex on HUVEC. In addition, we identified IL-8-activated neutrophils as a potential source of sIL-6Ralpha because IL-8 induced IL-6Ralpha shedding from the neutrophil membranes and increased in parallel sIL-6Ralpha concentrations in neutrophil supernatants. Furthermore, addition of neutrophils to thrombin-activated HUVEC significantly increased MCP-1 secretion, which could be decreased by blocking IL-6. Thus, thrombin-activated endothelium may induce a cascade of events characterized by IL-8 secretion, neutrophil local infiltration, and the release of IL-6Ralpha from neutrophil membranes. sIL-6Ralpha may then complex with IL-6 and increase the amount of MCP-1 produced by thrombin-activated endothelium, favoring monocyte infiltration, and the transformation of acute into chronic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号