首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The T4 mutation ptg19-80 affects the mechanism of capsid-length determination. It is located in gene 23, which encodes the major structural protein of the capsid. The mutation results in the production of abnormal-length capsids in high frequencies. This paper describes the isolation and partial characterization of second-site revertants of ptg19-80. In the course of their analysis, it was discovered that ptg19-80 is itself a double mutation consisting of a gene 23 mutation (ptg19-80c), which causes the morphogenetic defect, and a suppressor mutation located near the lysozyme gene. Phenotypic characterization of nine pseudo-wild-type revertants of this double-mutation revealed that these revertants all produced lower frequencies of abnormal capsids than did ptg19-80. Seven of these revertants were shown to contain two suppressor mutations, one mapping in or near gene 22 and done mapping in or near gene 24. Both mutations were required for suppression. These suppressors displayed no discernible phenotype in the absence of ptg19-80c.  相似文献   

2.
The T4 gene 23 product (gp23) encodes the major structural protein of the mature capsid. Mutations in this gene have been described which disrupt the normal length-determining mechanism (A.H. Doermann, F.A. Eiserling, and L. Boehner, J. Virol. 12:374-385, 1973). Mutants which produce high levels of petite and giant phage (ptg) are restricted to three tight clusters in gene 23 (A.H. Doermann, A. Pao, and P. Jackson, J. Virol. 61:2823-2827, 1987). Twenty-six of these ptg mutations were cloned, and their DNA sequence alterations were determined. Each member of this set of ptg mutants arose from a single mutation, and the set defined 10 different sites at which ptg mutations can occur in gene 23. Two petite (pt) mutations in gene 23 (pt21-34 and ptE920g), which produce high frequencies of petite particles but no giants, were also sequenced. Both pt21-34 and ptE920g were shown to include multiple mutations. The phenotypes attributed to both pt and ptg mutations are discussed relative to the mechanism of capsid morphogenesis. A site-directed mutation (SD-1E) was created at the ptgNg191 site, and its phenotypic consequences were examined. Plaque morphology revertants arising from a gene 23 mutant derivative of pt21-34 and from SD-1E were isolated. A preliminary mapping of the mutation(s) responsible for their revertant phenotypes suggested that both intra- and extragenic suppressors of the petite phenotype can be isolated by this method.  相似文献   

3.
The capsid of bacteriophage T4 is composed of two essential structural proteins, gp23, the major constituent of the capsid, and gp24, a less prevalent protein that is located in the pentameric vertices of the capsid. gp24 is required both to stabilize the capsid and to allow it to be further matured. This requirement can be eliminated by bypass-24 (byp24) mutations within g23. We have isolated, cloned and sequenced several new byp24 mutations. These mutations are cold-sensitive in the absence of gp24, and are located in regions of g23 not known to contain any other mutations affecting capsid assembly. The cold-sensitivity of the byp24 mutations can be reduced by further mutations within g23 (trb mutations). Cloning and sequencing of these trb mutations has revealed that they lie in regions of g23 that contain clusters of mutations that cause the production of high levels of petite and giant phage (ptg mutations). Despite the proximity of the trb mutations to the ptg mutations, none of the ptg mutations has a Trb phenotype. The mutation ptE920g, which is also located near one of the ptg clusters, and which produces only petite and wild-type phage, has been shown to confer a Trb but not a Byp24 phenotype. The relevance of these observations to our understanding of capsid assembly is discussed.  相似文献   

4.
The phenotypic characteristics of 26 ptg mutations in T4 gene 23 are described. All were located in three tight clusters in that gene and, by definition of ptg mutations, all produced giant phage. Intermediate petite phage, which invariably made up a substantial fraction of the progeny of these mutants, appeared to be a unique product of gene 23 mutations. Isometric petite phage were produced in significant numbers by strains with mutations at only 4 of the 10 sites identified with the PTG phenotype. The data presented indicate that there was little if any variation in the lengths of the normal, the intermediate petite, and the isometric petite classes. The frequencies of those capsid types were fairly specific for the individual mutations. The giant capsids that resulted from ptg mutations also had characteristic length distributions, of which three types were distinguished. These highly specific effects of gene 23 ptg mutations on capsid length regulation of T4 imply that the product of gene 23, gp23, plays a significant role in controlling the length of its capsid. The restrictions these observations place on a model for T4 capsid length regulation are discussed briefly.  相似文献   

5.
Many large viral capsids require special pentameric proteins at their fivefold vertices. Nevertheless, deletion of the special vertex protein gene product 24 (gp24) in bacteriophage T4 can be compensated by mutations in the homologous major capsid protein gp23. The structure of such a mutant virus, determined by cryo-electron microscopy to 26 angstroms, shows that the gp24 pentamers are replaced by mutant major capsid protein (gp23) pentamers at the vertices, thus re-creating a viral capsid prior to the evolution of specialized major capsid proteins and vertex proteins. The mutant gp23* pentamer is structurally similar to the wild-type gp24* pentamer but the insertion domain is slightly more distant from the gp23* pentamer center. There are additional SOC molecules around the gp23* pentamers in the mutant virus that were not present around the gp24* pentamers in the wild-type virus.  相似文献   

6.
Four models for head length regulation in bacteriophage T4 are described and discussed. Several length mutants in the major capsid protein gene (23) were studied by sucrose gradient analysis, rotating gel analysis of DNA length, and by mixed infection gene dosage experiments with T4 amber mutants in gene 24. The results show that head length variation is quantized and highly specific, in that certain amino acid changes in gp23 results in reproducible and well-defined head length phenotypes. These data are presented as being most consistent with a vernier-type of head length control mechanism.  相似文献   

7.
The product of gene 31 is normally required for assembly of the T4 capsid. Two mutations that each bypass that requirement are shown to be located at separate sites in gene 23, which encodes the major structural protein of the capsid. A second phenotypic effect that characterizes both bypass31 mutant strains is the ability to multiply in host-defective strains, such as hdB3-1 and groEL mutants, on which wild-type T4 is unable to assemble capsids. The genetic data indicate that both phenotypic effects are due to the bypass31 mutation. Elimination of the requirement for both the phage protein, gp31, and the host protein, GroEL, by either of two single mutations in gene 23 indicates that GroEL and gp31 are normally needed to interact with gp23 in capsid assembly of wild-type T4.  相似文献   

8.
Four new mutants are described whose phenotypic expression affects the length of the head of bacteriophage T4D. All mutants produce some phenotypically normal phage particles. Mutant pt21-34 also produces at least two size classes of phage particle which have heads that are shorter than normal. The other three mutants, ptg19-2, ptg19-80, and ptg191, produce, in addition to phages with normal and with shorter-than-normal heads, giant phages with heads from 1.5 to at least 10 times the normal length. All mutations are clustered near gene 23. Giant phage particles have the following properties: they are infectious and contain and inject multiple genomes as a single continuous bihelical DNA molecule of greater-than-unit length. Their frequency, relative to the total plaque-former population, increases late in the infectious cycle. They have a normal diameter, variable length, and a buoyant density range in CsCl from equal to slightly greater than that of normal phage. The arrangement of capsomers is visible in the capsids, which are composed of cleaved gene 23 protein.  相似文献   

9.
A H Doermann  A Pao    P Jackson 《Journal of virology》1987,61(9):2823-2827
Fifty-two new bacteriophage T4 ptg mutations have been isolated by selecting for the giant-capsid phenotype they display. Genetic mapping placed all of them at eight sites, all located in gene 23. These sites were clustered in three locations, one near amber B17 (gene 23 nucleotide [NT] 268), another centrally placed between amE506 (NT 706) and amE1270 (NT 925), and the third between amC208 (NT 1297) and amE1236 (NT 1489). The lack of a selective system for identifying recombinant genotypes when dealing with the very close linkages found within these clusters opens the possibility that more than eight sites are represented in this set of mutations. Since one site was represented by only one mutation, it seems likely that further searching might uncover additional sites. It is suggested that the clustering of mutations observed here identifies regions of the gene 23 product that play a role in regulating the capsid length of T4.  相似文献   

10.
V B Rao  L W Black 《Cell》1985,42(3):967-977
A phage T4 DNA packaging enzyme appears to arise as a processed form of the major T4 capsid structural protein gp23. The enzyme activity and antigen are missing from all head gene mutants that block the morphogenetic proteolytic processing reactions of the head proteins in vivo. The enzyme antigen can be formed in vitro by T4 (gp21) specific processing of gp23 containing extracts. Enzyme antigen is found in active processed proheads but not in full heads. The enzyme and the major capsid protein show immunological cross-reactivity, produce common peptides upon proteolysis, and share an assembly-conformation-dependent ATP binding site. The packaging enzyme and the mature capsid protein (gp23*) both appear to arise from processing of gp23, the former as a minor product of a specific gp23 structure in the prohead, acting in DNA packaging as a DNA-dependent ATPase, and a headful-dependent terminase.  相似文献   

11.
The study of bacteriophage T4 assembly has revealed regulatory mechanisms pertinent not only to viruses but also to macromolecular complexes. The capsid of bacteriophage T4 is composed of the major capsid protein gp23, and a minor capsid protein gp24, which is arranged as pentamers at the vertices of the capsid. In this study the T4 capsid protein gp24 and its mutant forms were overexpressed and purified to homogeneity. The overexpression from plasmid vectors of all the constructs in Escherichia coli yields biologically active protein in vivo as determined by assembly of active virus following infection with inactivated gene 24 mutant viruses. The gp24 mutant was subjected to surface entropy reduction by mutagenesis and reductive alkylation in order to improve its crystallization properties and diffraction quality. To determine if surface mutagenesis targeting would result in diffractable crystals, two glutamate to alanine mutations (E89A,E90A) were introduced. We report here the biochemical observations and consequent mutagenesis experiment that resulted in improvements in the stability, crystallizability and crystal quality of gp24 without affecting the overall folding. Rational modification of the protein surface to achieve crystallization appears promising for improving crystallization behavior and crystal diffracting qualities. The crystal of gp24(E89A,E90A) diffracted to 2.6A resolution compared to wild-type gp24 at 3.80A resolution under the same experimental conditions. Surface mutation proved to be a better method than reductive methylation for improving diffraction quality of the gp24 crystals.  相似文献   

12.
Bacteriophage T4 capsid is an elongated icosahedron decorated with 155 copies of Hoc, a nonessential highly antigenic outer capsid protein. One Hoc monomer is present in the center of each major capsid protein (gp23*) hexon. We describe an in vitro assembly system which allows display of HIV antigens, p24-gag, Nef, and an engineered gp41 C-peptide trimer, on phage T4 capsid surface through Hoc-capsid interactions. In-frame fusions were constructed by splicing the human immunodeficiency virus (HIV) genes to the 5' or 3' end of the Hoc gene. The Hoc fusion proteins were expressed, purified, and displayed on hoc(-) phage particles in a defined in vitro system. Single or multiple antigens were efficiently displayed, leading to saturation of all available capsid binding sites. The displayed p24 was highly immunogenic in mice in the absence of any external adjuvant, eliciting strong p24-specific antibodies, as well as Th1 and Th2 cellular responses with a bias toward the Th2 response. The phage T4 system offers new direction and insights for HIV vaccine development with the potential to increase the breadth of both cellular and humoral immune responses.  相似文献   

13.
Bacteriophage T4 carrying an amber mutation in gene 22 plus an amber mutation in gene 21 form aberrant, tubular structures termed rough polyheads, instead of complete phage when they infect Escherichia coli B. These rough polyheads consist almost entirely of the major capsid protein in its uncleaved form (gp23). When rough polyheads are treated under mild conditions with any of the five proteases, trypsin, chymotrypsin, thermolysin, pronase, or the protease from Staphylococcus aureus V8, the gp23 is rapidly hydrolyzed at a limited number of peptide bonds. In contrast, cleaved capsid protein (gp23) in mature phage capsids is completely resistant to proteolysis under the same conditions. A major project in this laboratory requires determining the primary structure of gp23, a large protein (Mr = 58,000) quite rich in those amino acids at which cleavages are achieved by conventional means. Recovery of peptides from the complex mixtures resulting from such cleavages proved to be extremely difficult. The limited proteolysis of gp23 in rough polyheads had yielded a set of large, easily purified fragments which are greatly simplifying the task of determining the primary structure of this protein.  相似文献   

14.
Folding of bacteriophage T4 major capsid protein, gene product 23 (534 a.a.), is aided by two proteins: E. coli GroEL chaperonin and viral gp31 co-chaperonin. In the present work a set of mutants with extensive deletions inside gene 23 using controlled digestion with Bal31 nuclease has been constructed. Proteins with deletions were co-expressed from plasmid vectors with phage gp31 co-chaperonin. Deletions from 8 to 33 a.a. in the N-terminal region of the gp23 molecule covering the protein proteolytic cleavage site during capsid maturation have no influence on the mutants' ability to produce in E. coli cells proteins which form regular structures—polyheads. Deletions in other regions of the polypeptide chain (187-203 and 367-476 a.a.) disturb the correct folding and subsequent assembly of gp23 into polyheads.  相似文献   

15.
Gene 2.5 of bacteriophage T7 encodes a ssDNA binding protein (gp2.5) essential for DNA replication. The C-terminal phenylalanine of gp2.5 is critical for function and mutations in that position are dominant lethal. In order to identify gp2.5 interactions we designed a screen for suppressors of gp2.5 lacking the C-terminal phenylalanine. Screening for suppressors of dominant lethal mutations of essential genes is challenging as the phenotype prevents propagation. We select for phage encoding a dominant lethal version of gene 2.5, whose viability is recovered via second-site suppressor mutation(s). Functional gp2.5 is expressed in trans for propagation of the unviable phage and allows suppression to occur via natural selection. The isolated intragenic suppressors support the critical role of the C-terminal phenylalanine. Extragenic suppressor mutations occur in several genes encoding enzymes of DNA metabolism. We have focused on the suppressor mutations in gene 5 encoding the T7 DNA polymerase (gp5) as the gp5/gp2.5 interaction is well documented. The suppressor mutations in gene 5 are necessary and sufficient to suppress the lethal phenotype of gp2.5 lacking the C-terminal phenylalanine. The affected residues map in proximity to aromatic residues and to residues in contact with DNA in the crystal structure of T7 DNA polymerase-thioredoxin.  相似文献   

16.
17.
Regulation of Expression of Cloned Bacteriophage T4 Late Gene 23   总被引:5,自引:4,他引:1       下载免费PDF全文
The parameters governing the activity of the cloned T4 gene 23, which codes for the major T4 head protein, were analyzed. Suppressor-negative bacteria carrying wild-type T4 gene 23 cloned into plasmid pCR1 or pBR322 were infected with T4 gene 23 amber phage also carrying mutations in the following genes: (i) denA and denB (to prevent breakdown of plasmid DNA after infection) and (ii) denA, denB, and, in addition, 56 (to generate newly replicated DNA containing dCMP) and alc/unf (because mutations in this last gene allow late genes to be expressed in cytosine-containing T4 DNA). Bacteria infected with these phage were labeled with (14)C-amino acids at various times after infection, and the labeled proteins were separated by one-dimensional gel electrophoresis so that the synthesis of plasmid-coded gp23 could be compared with the synthesis of other, chromosome-coded T4 late proteins. We analyzed the effects of additional mutations that inactivate DNA replication proteins (genes 32 and 43), an RNA polymerase-binding protein (gene 55), type II topoisomerase (gene 52), and an exonuclease function involved in recombination (gene 46) on the synthesis of plasmid-coded gp23 in relation to chromosome-coded T4 late proteins. In the denA:denB:56:alc/unf genetic background, the phage chromosome-borne late genes followed the same regulatory rules (with respect to DNA replication and gp55 action) as in the denA:denB genetic background. The plasmid-carried gene 23 was also under gp55 control, but was less sensitive than the chromosomal late genes to perturbations of DNA replication. Synthesis of plasmid-coded gp23 was greatly inhibited when both the type II T4 topoisomerase and the host's DNA gyrase are inactivated. Synthesis of gp23 was also substantially affected by a mutation in gene 46, but less strongly than in the denA:denB genetic background. These observations are interpreted as follows. The plasmid-borne T4 gene 23 is primarily expressed from a late promoter. Expression of gene 23 from this late promoter responds to an activation event which involves some structural alteration of DNA. In these respects, the requirements for expressing the plasmid-borne gene 23 and chromosomal late genes are very similar (although in the denA:denB:56:alc/unf genetic background, there are significant quantitative differences). For the plasmid-borne gene 23, activation involves the T4 gp46, a protein which is required for DNA recombination. However, for the reasons presented in the accompanying paper (Jacobs et al., J. Virol. 39:31-45, 1981), we conclude that the activation of gene 23 does not require a complete breakage-reunion event which transposes that gene to a later promoter on the phage chromosome. Ways in which gp46 may actually be involved in late promoter activation on the plasmid are discussed.  相似文献   

18.
Folding of the major capsid protein of bacteriophage T4 encoded by gene 23 is aided by Escherichia coli GroEL chaperonin and phage co-chaperonin gp31. In the absence of gene product (gp) 31, aggregates of recombinant gp23 accumulate in the cell similar to inclusion bodies. These aggregates can be solubilized with 6 M urea. However, the protein cannot form regular structures in solution. A system of co-expression of gp31 and gp23 under the control of phage T7 promoter in E. coli cells has been constructed. Folding of entire-length gp23 (534 amino acid residues) in this system results in the correctly folded recombinant gp23, which forms long regular structures (polyheads) in the cell.  相似文献   

19.
Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号