首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-QTL mapping for quantitative traits using distorted markers   总被引:2,自引:0,他引:2  
Marker segregation distortion is a common natural phenomenon. However, relatively little is known about utilizing distorted markers for detecting quantitative trait loci (QTL). Therefore, in this study we proposed a multi-QTL mapping approach that uses distorted markers. First, the information from all markers, including distorted markers, was used to detect segregation distortion loci (SDL). Second, the information from the detected SDL was used to correct the conditional probabilities of the QTL genotypes conditional on marker information, and these corrected probabilities were then incorporated into a multi-QTL mapping methodology. Finally, the proposed approach was validated by both Monte Carlo simulation studies and real data analysis. The results from the simulation studies show that as long as one or two SDL are placed around the simulated QTL, there are no differences between the new method and the ordinary interval mapping method in terms of the power of QTL detection or the estimates of the position and dominant effects of the QTL. However, the power of QTL detection is higher under the dominant genetic model of SDL than under the additive genetic model, and the estimate for the additive effect of QTL using the new method is significantly different from the estimate obtained using ordinary interval mapping. The above results were further confirmed by the detection of QTL for dried soymilk in 222 F2:4 families in soybean.  相似文献   

2.
Molecular markers have been widely used to map quantitative trait loci (QTL). The QTL mapping partly relies on accurate linkage maps. The non-Mendelian segregation of markers, which affects not only the estimation of genetic distance between two markers but also the order of markers on a same linkage group, is usually observed in QTL analysis. However, these distorted markers are often ignored in the real data analysis of QTL mapping so that some important information may be lost. In this paper, we developed a multipoint approach via Hidden Markov chain model to reconstruct the linkage maps given a specified gene order while simultaneously making use of distorted, dominant and missing markers in an F2 population. The new method was compared with the methods in the MapManager and Mapmaker programs, respectively, and verified by a series of Monte Carlo simulation experiments along with a working example. Results showed that the adjusted linkage maps can be used for further QTL or segregation distortion locus (SDL) analysis unless there are strong evidences to prove that all markers show normal Mendelian segregation.  相似文献   

3.
Missing marker and segregation distortion are commonly encountered in actual quantitative trait locus (QTL) mapping populations. Our objective in this study was to investigate the impact of the two factors on QTL mapping through computer simulations. Results indicate that detection power decreases with increasing levels of missing markers, and the false discovery rate increases. Missing markers have greater effects on smaller effect QTL and smaller size populations. The effect of missing markers can be quantified by a population with a reduced size similar to the marker missing rate. As for segregation distortion, if the distorted marker is not closely linked with any QTL, it will not have significant impact on QTL mapping; otherwise, the impact of the distortion will depend on the degree of dominance of QTL, frequencies of the three marker types, the linkage distance between the distorted marker and QTL, and the mapping population size. Sometimes, the distortion can result in a higher genetic variance than that of non-distortion, and therefore benefits the detection of linked QTL. A formula of the ratio of genetic variance explained by QTL under distortion and non-distortion was given in this study, so as to easily determine whether the segregation distortion marker (SDM) increases or decreases the QTL detection power. The effect of SDM decreases rapidly as its linkage relationship with QTL becomes looser. In general, distorted markers will not have a great effect on the position and effect estimations of QTL, and their effects can be ignored in large-size mapping populations.  相似文献   

4.
The interaction between segregation distortion loci (SDL) has been often observed in all kinds of mapping populations. However, little has been known about the effect of epistatic SDL on quantitative trait locus (QTL) mapping. Here we proposed a multi-QTL mapping approach using epistatic distorted markers. Using the corrected linkage groups, epistatic SDL was identified. Then, these SDL parameters were used to correct the conditional probabilities of QTL genotypes, and these corrections were further incorporated into the new QTL mapping approach. Finally, a set of simulated datasets and a real data in 304 mouse F2 individuals were used to validate the new method. As compared with the old method, the new one corrects genetic distance between distorted markers, and considers epistasis between two linked SDL. As a result, the power in the detection of QTL is higher for the new method than for the old one, and significant differences for estimates of QTL parameters between the two methods were observed, except for QTL position. Among two QTL for mouse weight, one significant difference for QTL additive effect between the above two methods was observed, because epistatic SDL between markers C66 and T93 exists (P = 2.94e-4).  相似文献   

5.
与偏分离位点连锁的QTL作图的统计方法   总被引:2,自引:0,他引:2  
提出了一种统计方法,可以估计与偏分离位点连锁的QTL的位置和效应。该方法利用回交群体中呈现偏分离的分子标记,首先用最大似然法对偏分离位点与标记位点之间的重组率和配子存活率进行估计,然后用区间作图法估计加性-显性模型下QTL的位置和效应参数。该方法可用于对常规作图研究中表现偏分离的标记进行分析,以帮助我们发现新的偏分离基因(或不育基因)和数量性状位点。  相似文献   

6.
Recently, the use of linkage disequilibrium (LD) to locate genes which affect quantitative traits (QTL) has received an increasing interest, but the plausibility of fine mapping using linkage disequilibrium techniques for QTL has not been well studied. The main objectives of this work were to (1) measure the extent and pattern of LD between a putative QTL and nearby markers in finite populations and (2) investigate the usefulness of LD in fine mapping QTL in simulated populations using a dense map of multiallelic or biallelic marker loci. The test of association between a marker and QTL and the power of the test were calculated based on single-marker regression analysis. The results show the presence of substantial linkage disequilibrium with closely linked marker loci after 100 to 200 generations of random mating. Although the power to test the association with a frequent QTL of large effect was satisfactory, the power was low for the QTL with a small effect and/or low frequency. More powerful, multi-locus methods may be required to map low frequent QTL with small genetic effects, as well as combining both linkage and linkage disequilibrium information. The results also showed that multiallelic markers are more useful than biallelic markers to detect linkage disequilibrium and association at an equal distance.  相似文献   

7.
Edmé SJ  Glynn NG  Comstock JC 《Heredity》2006,97(5):366-375
Genetic mapping techniques can be used to study the interaction between two different genomes after hybridization. This study investigated a Saccharum officinarum (Green German or GG, 2n approximately 11x approximately 110) x S. spontaneum (IND 81-146 or IND, 2n approximately 7x approximately 56) interspecific cross. Segregation of 193 microsatellite (SSR) loci was evaluated in the F(1) progeny of 169 full-sibs of the cross. Following the two-way pseudo-testcross strategy and 'cross pollination' population type, linkage groups (LG) and phases were established for each parent map, using the criteria of LOD score > or = 3.0 and a maximum recombination frequency of 0.35. Of the 193 markers analyzed, 61 were IND-specific, 106 were GG-specific, and 26 were heterozygous in both parents. About 78% of the markers segregated in a Mendelian fashion and 22% were distorted (as evaluated by chi(2)-tests, P < or = 0.01). The GG map included 91 marker loci arranged into 25 LG covering 1180 cM of the officinarum genome. The IND map consisted of 46 marker loci assembled into 10 LG, which spanned 614 cM of the spontaneum genome. A specific chromosome associated with segregation distortion was detected in the female (GG) genome only, probably as a result of double reduction. The segregation patterns of the marker loci indicated a centromere-driven distortion process with the shared allelic markers (as putative centromeres) regulating the placement and association of markers with opposite phase (coupling vs repulsion) and dosage on either side. Although incomplete, the framework maps were informative with respect to segregation distortion, chromosome fusion, rearrangements, and translocations, observed in both parental genomes as a result of their merger.  相似文献   

8.
Vogl C  Xu S 《Genetics》2000,155(3):1439-1447
In line-crossing experiments, deviations from Mendelian segregation ratios are usually observed for some markers. We hypothesize that these deviations are caused by one or more segregation-distorting loci (SDL) linked to the markers. We develop both a maximum-likelihood (ML) method and a Bayesian method to map SDL using molecular markers. The ML mapping is implemented via an EM algorithm and the Bayesian method is performed via the Markov chain Monte Carlo (MCMC). The Bayesian mapping is computationally more intensive than the ML mapping but can handle more complicated models such as multiple SDL and variable number of SDL. Both methods are applied to a set of simulated data and real data from a cross of two Scots pine trees.  相似文献   

9.
Hall MC  Willis JH 《Genetics》2005,170(1):375-386
We constructed a genetic linkage map between two divergent populations of Mimulus guttatus. We genotyped an F(2) mapping population (N = 539) at 154 AFLP, microsatellite, and gene-based markers. A framework map was constructed consisting of 112 marker loci on 14 linkage groups with a total map length of 1518 cM Kosambi. Nearly half of all markers (48%) exhibited significant transmission ratio distortion (alpha = 0.05). By using a Bayesian multipoint mapping method and visual inspection of significantly distorted markers, we detected 12 transmission ratio distorting loci (TRDL) throughout the genome. The high degree of segregation distortion detected in this intraspecific map indicates substantial genomic divergence that perhaps suggests genomic incompatibilities between these two populations. We compare the pattern of transmission ratio distortion in this map to an interspecific map constructed between M. guttatus and M. nasutus. A similar level of segregation distortion is detected in both maps. Collinear regions between maps are compared to determine if there are shared genetic patterns of non-Mendelian segregation distortion within and among Mimulus species.  相似文献   

10.
IIntroductionTheuseofrestrlctlonfragmentlengthpolymorphism(RFLP)markershasgreatlyslmpllfledthegeneticanalysisofquantitativetraits,providingareliableandextensiveframeworkofquantltatlvemarkerstowhichquantltatlyetyaitIOCI(QTL)clnhilinked[‘].TodetectthelinkagebetwwenRFLPmarkersandPhenotyPlcvariationsoh-served,generallinearmodelofanalysisofvariance(ANOVA)hasbeenextensivelyusedL‘zJ.ByusingF、populations,thecompletegeneticInformation,thatIs,thethreegenotypesofageneticfact…  相似文献   

11.
Quantitative trait loci (QTL) mapping is an important approach for the study of the genetic architecture of quantitative traits. For perennial species, inbred lines cannot be obtained due to inbreed depression and a long juvenile period. Instead, linkage mapping can be performed by using a full-sib progeny. This creates a complex scenario because both markers and QTL alleles can have different segregation patterns as well as different linkage phases between them. We present a two-step method for QTL mapping using full-sib progeny based on composite interval mapping (i.e., interval mapping with cofactors), considering an integrated genetic map with markers with different segregation patterns and conditional probabilities obtained by a multipoint approach. The model is based on three orthogonal contrasts to estimate the additive effect (one in each parent) and dominance effect. These estimatives are obtained using the EM algorithm. In the first step, the genome is scanned to detect QTL. After, segregation pattern and linkage phases between QTL and markers are estimated. A simulated example is presented to validate the methodology. In general, the new model is more effective than existing approaches, because it can reveal QTL present in a full-sib progeny that segregates in any pattern present and can also identify dominance effects. Also, the inclusion of cofactors provided more statistical power for QTL mapping.  相似文献   

12.
A phenotypically polymorphic barley (Hordeum vulgare L.) mapping population was developed using morphological marker stocks as parents. Ninety-four doubled-haploid lines were derived for genetic mapping from an F1 using the Hordeum bulbosum system. A linkage map was constructed using 12 morphological markers, 87 restriction fragment length polymorphism (RFLP), five random amplified polymorphic DNA (RAPD), one sequence-tagged site (STS), one intron fragment length polymorphism (IFLP), 33 simple sequence repeat (SSR), and 586 amplified fragment length polymorphism (AFLP) markers. The genetic map spanned 1,387 cM with an average density of one marker every 1.9 cM. AFLP markers tended to cluster on centromeric regions and were more abundant on chromosome 1 (7H). RAPD markers showed a high level of segregation distortion, 54% compared with the 26% observed for AFLP markers, 27% for SSR markers, and 18% for RFLP markers. Three major regions of segregation distortion, based on RFLP and morphological markers, were located on chromosomes 2 (2H), 3 (3H), and 7 (5H). Segregation distortion may indicate that preferential gametic selection occurred during the development of the doubled-haploid lines. This may be due to the extreme phenotypes determined by alleles at morphological trait loci of the dominant and recessive parental stocks. Several molecular markers were found to be closely linked to morphological loci. The linkage map reported herein will be useful in integrating data on quantitative traits with morphological variants and should aid in map-based cloning of genes controlling morphological traits. Received: 23 August 2000 / Accepted: 15 December 2000  相似文献   

13.
Based on a two-way pseudo-testcross strategy, high density and complete coverage linkage maps were constructed for the maternal and paternal parents of an intraspecific F2 pedigree of Populus deltoides. A total of 1,107 testcross markers were obtained, and the mapping population consisted of 376 progeny. Among these markers, 597 were from the mother, and were assigned into 19 linkage groups, spanning a total genetic distance of 1,940.3 cM. The remaining 519 markers were from the father, and were also were mapped into 19 linkage groups, covering 2,496.3 cM. The genome coverage of both maps was estimated as greater than 99.9% at 20 cM per marker, and the numbers of linkage groups of both maps were in accordance with the 19 haploid chromosomes in Populus. Marker segregation distortion was observed in large contiguous blocks on some of the linkage groups. Subsequently, we mapped the segregation distortion loci in this mapping pedigree. Altogether, eight segregation distortion loci with significant logarithm of odds supports were detected. Segregation distortion indicated the uneven transmission of the alternate alleles from the mapping parents. The corresponding genome regions might contain deleterious genes or be associated with hybridization incompatibility. In addition to the detection of segregation distortion loci, the established genetic maps will serve as a basic resource for mapping genetic loci controlling traits of interest in future studies.  相似文献   

14.
Marker transmission ratio distortion (TRD) revealed in genetic mapping studies on distant crosses can be used to infer the genetic basis relating to reproductive barriers between species. Unlike measuring the degree of TRD by the overall number of segregation distorted markers in the affected genome regions, mapping the segregation distorting loci (SDL) provides reliable statistic parameters that help to confine the target genomic regions for further characterization at molecular level. Using the linkage map constructed for a natural hybrid of Pinus hwangshanensis and Pinus massoniana, we perform SDL analyses and align the established map to the loblolly pine consensus map. Altogether, six SDLs with relatively strong LOD supports are detected on four linkage groups of the established map. Since gametes inheriting different alternate chromatid blocks from the SDL affecting genome regions have uneven chance to descend to the offspring, the corresponding genome regions are supposed to play more significant roles in rendering the reproductive isolations between P. hwangshanensis and P. massoniana. This paper presents a case study on a crucial step for uncovering the hidden genetic factors that trigger the uneven descending of gametes in a natural hybrid pine.  相似文献   

15.
Xiong M  Fan R  Jin L 《Human heredity》2002,53(3):158-172
As a dense map of single nucleotide polymorphism (SNP) markers are available, population-based linkage disequilibrium (LD) mapping or association study is becoming one of the major tools for identifying quantitative trait loci (QTL) and for fine gene mapping. However, in many cases, LD between the marker and trait locus is not very strong. Approaches that maximize the potential of detecting LD will be essential for the success of LD mapping of QTL. In this paper, we propose two strategies for increasing the probability of detecting LD: (1) phenotypic selection and (2) haplotype LD mapping. To provide the foundations for LD mapping of QTL under selection, we develop analytic tools for assessing the impact of phenotypic selection on allele and haplotype frequencies, and LD under three trait models: single trait locus, two unlinked trait loci, and two linked trait loci with or without epistasis. In addition to a traditional chi(2) test, which compares the difference in allele or haplotype frequencies in the selected sample and population sample, we present multiple regression methods for LD mapping of QTL, and investigate which methods are effective in employing phenotypic selection for QTL mapping. We also develop a statistical framework for investigating and comparing the power of the single marker and multilocus haplotype test for LD mapping of QTL. Finally, the proposed methods are applied to mapping QTL influencing variation in systolic blood pressure in an isolated Chinese population.  相似文献   

16.
Deng HW  Li YM  Li MX  Liu PY 《Human heredity》2003,56(4):160-165
Hardy-Weinberg disequilibrium (HWD) measures have been proposed using dense markers to fine map a quantitative trait locus (QTL) to regions < approximately 1 cM. Earlier HWD measures may introduce bias in the fine mapping because they are dependent on marker allele frequencies across loci. Hence, HWD indices that do not depend on marker allele frequencies are desired for fine mapping. Based on our earlier work, here we present four new HWD indices that do not depend on marker allele frequencies. Two are for use when marker allele frequencies in a study population are known, and two are for use when marker allele frequencies in a study population are not known and are only known in the extreme samples. The new measures are a function of the genetic distance between the marker locus and a QTL. Through simulations, we investigated and compared the fine mapping performance of the new HWD measures with that of the earlier ones. Our results show that when marker allele frequencies vary across loci, the new measures presented here are more robust and powerful.  相似文献   

17.
Statistical methods for mapping quantitative trait loci (QTLs) in full-sib forest trees, in which the number of alleles and linkage phase can vary from locus to locus, are still not well established. Previous studies assumed that the QTL segregation pattern was fixed throughout the genome in a full-sib family, despite the fact that this pattern can vary among regions of the genome. In this paper, we propose a method for selecting the appropriate model for QTL mapping based on the segregation of different types of markers and QTLs in a full-sib family. The QTL segregation patterns were classified into three types: test cross (1:1 segregation), F2 cross (1:2:1 segregation) and full cross (1:1:1:1 segregation). Akaike’s information criterion (AIC), the Bayesian information criterion (BIC) and the Laplace-empirical criterion (LEC) were used to select the most likely QTL segregation pattern. Simulations were used to evaluate the power of these criteria and the precision of parameter estimates. A Windows-based software was developed to run the selected QTL mapping method. A real example is presented to illustrate QTL mapping in forest trees based on an integrated linkage map with various segregation markers. The implications of this method for accurate QTL mapping in outbred species are discussed.  相似文献   

18.
Amplified fragment length polymorphisms (AFLPs) are a widely used marker system: the technique is very cost-effective, easy and rapid, and reproducibly generates hundreds of markers. Unfortunately, AFLP alleles are typically scored as the presence or absence of a band and, thus, heterozygous and dominant homozygous genotypes cannot be distinguished. This results in a significant loss of information, especially as regards mapping of quantitative trait loci (QTLs). We present a Monte Carlo Markov Chain method that allows us to compute the identity by descent probabilities (IBD) in a general pedigree whose individuals have been typed for dominant markers. The method allows us to include the information provided by the fluorescent band intensities of the markers, the rationale being that homozygous individuals have on average higher band intensities than heterozygous individuals, as well as information from linked markers in each individual and its relatives. Once IBD probabilities are obtained, they can be combined into the QTL mapping strategy of choice. We illustrate the method with two simulated populations: an outbred population consisting of full sib families, and an F2 cross between inbred lines. Two marker spacings were considered, 5 or 20 cM, in the outbred population. There was almost no difference, for the practical purpose of QTL estimation, between AFLPs and biallelic codominant markers when the band density is taken into account, especially at the 5 cM spacing. The performance of AFLPs every 5 cM was also comparable to that of highly polymorphic markers (microsatellites) spaced every 20 cM. In economic terms, QTL mapping with a dense map of AFLPs is clearly better than microsatellite QTL mapping and little is lost in terms of accuracy of position. Nevertheless, at low marker densities, AFLPs or other biallelic markers result in very inaccurate estimates of QTL position.  相似文献   

19.
遗传群体偏分离研究进展   总被引:5,自引:0,他引:5  
偏分离是指观察到的基因型比例偏离预期的孟德尔分离频率方式,无法用传统的遗传理论和方法加以分析。偏分离被认为是一种重要的进化动力,并对遗传连锁图谱的构建造成影响。本文针对偏分离的现象、偏分离的影响因素和形成原因,以及对QTL定位的影响等方面进行综合分析,系统阐述了植物分离群体偏分离的研究进展,为后续研究提供有益的参考。  相似文献   

20.
Segregation distortion can negatively impact on gains expected using selection. In order to increase our understanding of genetic factors that may influence the extent and direction of segregation distortion, segregation distortion analyses were conducted in four different doubled haploid (DH) populations. A high-density composite map of barley was then constructed by integrating information from the four populations. The composite map contained 2,111 unique loci, comprising RFLP, SSR and DArT markers and spanned 1,136 cM. In the four populations investigated, the proportion of markers with segregation distortion ranged from 15 to 38%, depending on the population. The highest distortion was observed in populations derived by the microspore culture technique. Distorted loci tended to be clustered, which allowed definition of segregation distortion regions (SDRs). A total of 14 SDRs were identified in the 4 populations. Using the high-density composite map, several SDRs were shown to have consistent map locations in two or more populations; one SDR on chromosome 1H was present in all four populations. The analysis of haplotypes underlying seven SDRs indicated that in three cases the under-represented haplotypes were common across populations, but for four SDRs the under-represented haplotypes varied across populations. Six of the seven centromeric regions harboured SDRs suggesting that genetic processes related to position near a centromere caused the segregation distortion in these SDRs. Other SDRs were most likely due to the methods used to produce the DH populations. The association of the SDRs identified in this study and some of the genes involved in the process of haploid production described in other studies were compared. The composite map constructed in this study provides an additional resource for the barley community via increased genome coverage and the provision of additional marker options. It has also enabled further insights into mechanisms that underpin segregation distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号