首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elaboration of differentiation of tonal and amplitude-modulated stimuli with a frequency modulation of 5 Hz conducted on laboratory rats in five months after section of brachii colliculi proved to be impossible. The rate of correct reactions did not differ from the probability of random choice during 500 presentations of conditioned stimuli but significantly differed from the values obtained during differentiation of these signals in rats after control operation. Electrophysiological control showed that while in the control group and in intact animals at the presentation of amplitude-modulated stimuli with modulation frequency of 1-20 Hz summary potentials were recorded in the auditory cortex synchronized with their modulation frequency,--in rats after section of brachii colliculi only on- and off-responses were observed. It may be suggested that sensory providing of conditioned activity during the action of amplitude-modulated stimuli with low modulation frequency may be achieved only with the participation of specific pathways.  相似文献   

2.
Elaboration of differentiation between sound stimuli was carried out in 15 laboratory rats. After bilateral ablations of auditory inferior colliculi the border frequency of stimulus amplitude modulation was determined for all rats when they still could differentiate between tonal and amplitude-modulated stimuli. Decrease in frequency of modulation by 2 Hz and more from the border frequency caused a complete loss of ability to differentiate. In all rats bilateral inferior colliculi ablations completely disturbed differentiation between tonal and amplitude-modulated signals with modulation frequency below 183-191 Hz (the range of border frequencies). The surgery however did not affect differentiation between tonal and amplitude-modulated signals with the modulation frequencies above 183-191 Hz. The data suggest that the functions of completion of coding of amplitude-modulated stimuli in the auditory system is strictly linked with definite structures.  相似文献   

3.
4.
The effect of unilateral and bilateral partial and total ablation of the auditory cortex on compensation of Doppler frequency shifts in echosignals was studied in greater horseshoe bats moving in space. The ability of the bats to compensate Doppler surges in the echolocation signal was found to be worsened even after partial ablation of the auditory cortex. Total bilateral ablation led to more marked and irreversible changes in the functioning of the Doppler echolocation system. In this case the degree of compensation in the decorticated animals was only 33% of normal; the return of the frequency of the constant part of the signal to the resting level after movement of the animal ceased was delayed. After total ablation of the auditory cortical projection area definite retrograde degeneration of cells of the medial geniculate body was observed. It is concluded from the results that the auditory cortex in bats plays a direct part in echolocation spatial analysis.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 43–50, January–February, 1982.  相似文献   

5.
Evidence from human psychophysical and animal electrophysiological studies suggests that sensitivity to interaural time delay (ITD) in the modulating envelope of a high-frequency carrier can be enhanced using half-wave rectified stimuli. Recent evidence has shown potential benefits of equivalent electrical stimuli to deaf individuals with bilateral cochlear implants (CIs). In the current study we assessed the effects of envelope shape on ITD sensitivity in the primary auditory cortex of normal-hearing ferrets, and profoundly-deaf animals with bilateral CIs. In normal-hearing animals, cortical sensitivity to ITDs (±1 ms in 0.1-ms steps) was assessed in response to dichotically-presented i) sinusoidal amplitude-modulated (SAM) and ii) half-wave rectified (HWR) tones (100-ms duration; 70 dB SPL) presented at the best-frequency of the unit over a range of modulation frequencies. In separate experiments, adult ferrets were deafened with neomycin administration and bilaterally-implanted with intra-cochlear electrode arrays. Electrically-evoked auditory brainstem responses (EABRs) were recorded in response to bipolar electrical stimulation of the apical pair of electrodes with singe biphasic current pulses (40 µs per phase) over a range of current levels to measure hearing thresholds. Subsequently, we recorded cortical sensitivity to ITDs (±800 µs in 80-µs steps) within the envelope of SAM and HWR biphasic-pulse trains (40 µs per phase; 6000 pulses per second, 100-ms duration) over a range of modulation frequencies. In normal-hearing animals, nearly a third of cortical neurons were sensitive to envelope-ITDs in response to SAM tones. In deaf animals with bilateral CI, the proportion of ITD-sensitive cortical neurons was approximately a fifth in response to SAM pulse trains. In normal-hearing and deaf animals with bilateral CI the proportion of ITD sensitive units and neural sensitivity to ITDs increased in response to HWR, compared with SAM stimuli. Consequently, novel stimulation strategies based on envelope enhancement may prove beneficial to individuals with bilateral cochlear implants.  相似文献   

6.
The role of cortico-tectal pathways in auditory signal processing was studied in anesthetized rats by comparing the extracellular single unit activity in the inferior colliculus (IC) before and after functional ablation of the auditory cortex (AC) by tetrodotoxin (TTX). The responses of several IC neurons to sound stimuli were simultaneously recorded with a 16-channel electrode probe introduced into the IC. Click-evoked middle latency responses (MLR) recorded from the AC were suppressed for several hours after TTX injection. During AC inactivation the firing rate of IC neurons increased (40 % of neurons), decreased (44 %) or did not change (16 %) in comparison with control conditions. In several IC neurons, TTX injection resulted in alterations in the shape of the rate-level functions. Response thresholds, tuning properties and the type of discharge pattern of IC neurons were not altered during AC inactivation. However, in one-third of the neurons, the initial part of the response was less altered than the later, sustained part. In two-thirds of neuronal pairs, functional decortication resulted in a change in the cross-correlation coefficient. The results reveal the complex changes that appear in IC neuronal activity after functional ablation of the ipsilateral auditory cortex.  相似文献   

7.
We combined fMRI and EEG recording to study the neurophysiological responses associated with auditory stimulation across the sleep-wake cycle. We found that presentation of auditory stimuli produces bilateral activation in auditory cortex, thalamus, and caudate during both wakefulness and nonrapid eye movement (NREM) sleep. However, the left parietal and, bilaterally, the prefrontal and cingulate cortices and the thalamus were less activated during NREM sleep compared to wakefulness. These areas may play a role in the further processing of sensory information required to achieve conscious perception during wakefulness. Finally, during NREM sleep, the left amygdala and the left prefrontal cortex were more activated by stimuli having special affective significance than by neutral stimuli. These data suggests that the sleeping brain can process auditory stimuli and detect meaningful events.  相似文献   

8.
To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units—15% in frontal cortex, 23% in parietal cortex—significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat''s frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.  相似文献   

9.
Spatial frequency is a fundamental visual feature coded in primary visual cortex, relevant for perceiving textures, objects, hierarchical structures, and scenes, as well as for directing attention and eye movements. Temporal amplitude-modulation (AM) rate is a fundamental auditory feature coded in primary auditory cortex, relevant for perceiving auditory objects, scenes, and speech. Spatial frequency and temporal AM rate are thus fundamental building blocks of visual and auditory perception. Recent results suggest that crossmodal interactions are commonplace across the primary sensory cortices and that some of the underlying neural associations develop through consistent multisensory experience such as audio-visually perceiving speech, gender, and objects. We demonstrate that people consistently and absolutely (rather than relatively) match specific auditory AM rates to specific visual spatial frequencies. We further demonstrate that this crossmodal mapping allows amplitude-modulated sounds to guide attention to and modulate awareness of specific visual spatial frequencies. Additional results show that the crossmodal association is approximately linear, based on physical spatial frequency, and generalizes to tactile pulses, suggesting that the association develops through multisensory experience during manual exploration of surfaces.  相似文献   

10.
Responses of 93 neurons to isolated presentation of a single click and a series of 10 clicks with following frequency of 1000 Hz and responses of 66 neurons after the click had become a positive conditioned stimulus, and a series of 10 clicks had become a differential, negative stimulus, were investigated in chronic experiments on cats. Formation and realization of differential inhibition of an instrumental food reflex was shown not to lead to strengthening of inhibition in the auditory cortex, and the process of differential inhibition itself within the primary auditory cortex is not essentially an inhibitory process. Identical changes were found in responses of auditory cortical neurons to both positive and negative conditioned stimuli after training, evidence that neurons of the primary auditory cortex play a similar role in realization of the instrumental reflex and in its differential inhibition. It is suggested that the presence of groups of neurons responding by excitation or inhibition only to presentation of a stimulus with definite informative value is of great importance for differentiation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukranian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 212–221, March–April, 1985.  相似文献   

11.
3H-glycine was locally applied to the auditory cortex of chloralose anaesthetized cats. Upon tonal stimulation the 3H-glycine was taken up and incorporated into the proteins of nerve cells. The selectively activated neurons were visualized by serial light microscopic autoradiography. Systematic application of this experimental setup revealed tonotopic organization in the primary auditory cortex. The distribution of nerve cells responding to spectrally pure, continuous tones of 0.34, 3.3, 8.0, 16 and 30 kHz was mapped. At these frequencies, distinct but overlapping representations were found, whose area increased in parallel with the elevation of frequencies. Tone pips and ramp stimuli resulted in generalized labelling, independently of pitch.  相似文献   

12.
We investigated the functional organization of the human auditory cortex using a novel electrophysiological recording technique combined with an advanced brain magnetic resonance imaging (MRI) technique. Tonotopic mapping data were obtained during single unit recording along the Heschl’s gyrus. Most of the units studied (73%) demonstrated sharply tuned excitatory responses. A tonotopic pattern was observed with the best frequencies systematically increasing as more medial-caudal recording sites were sampled. Additionally, a new auditory field along the posterior aspect of the superior temporal gyrus has been identified using a high spatial resolution direct recording technique. Results obtained during electrical stimulation demonstrate functional connectivity between the primary auditory cortex and the auditory field in the posterior superior temporal gyrus.  相似文献   

13.

Background

A flexed neck posture leads to non-specific activation of the brain. Sensory evoked cerebral potentials and focal brain blood flow have been used to evaluate the activation of the sensory cortex. We investigated the effects of a flexed neck posture on the cerebral potentials evoked by visual, auditory and somatosensory stimuli and focal brain blood flow in the related sensory cortices.

Methods

Twelve healthy young adults received right visual hemi-field, binaural auditory and left median nerve stimuli while sitting with the neck in a resting and flexed (20° flexion) position. Sensory evoked potentials were recorded from the right occipital region, Cz in accordance with the international 10–20 system, and 2 cm posterior from C4, during visual, auditory and somatosensory stimulations. The oxidative-hemoglobin concentration was measured in the respective sensory cortex using near-infrared spectroscopy.

Results

Latencies of the late component of all sensory evoked potentials significantly shortened, and the amplitude of auditory evoked potentials increased when the neck was in a flexed position. Oxidative-hemoglobin concentrations in the left and right visual cortices were higher during visual stimulation in the flexed neck position. The left visual cortex is responsible for receiving the visual information. In addition, oxidative-hemoglobin concentrations in the bilateral auditory cortex during auditory stimulation, and in the right somatosensory cortex during somatosensory stimulation, were higher in the flexed neck position.

Conclusions

Visual, auditory and somatosensory pathways were activated by neck flexion. The sensory cortices were selectively activated, reflecting the modalities in sensory projection to the cerebral cortex and inter-hemispheric connections.  相似文献   

14.
We examined the auditory response properties of neurons in the medial geniculate body of unanesthetized little brown bats (Myotis lucifugus). The units' selectivities to stimulus frequency, amplitude and duration were not significantly different from those of neurons in the inferior colliculus (Condon et al. 1994), which provides the primary excitatory input to the medial geniculate body, or in the auditory cortex (Condon et al. 1997) which receives primary input from the medial geniculate body. However, in response to trains of unmodulated tone pulses, the upper cutoff frequency for time-locked discharges (64 ± 46.9 pulses per second or pps) and the mean number of spikes per pulse (19.2 ± 12.2 pps), were intermediate to those for the inferior colliculus and auditory cortex. Further, in response to amplitude-modulated pulse trains, medial geniculate body units displayed a degree of response facilitation that was intermediate to that of the inferior colliculus and auditory cortex inferior colliculus: 1.32 ± 0.33; medial geniculate body: 1.75 ± 0.26; auditory cortex: 2.52 ± 0.96, P < 0.01). These data suggest that the representation of isolated tone pulses is not significantly altered along the colliculo-thalamo-cortical axis, but that the fidelity of representation of temporally patterned signals progressively degrades along this axis. The degradation in response fidelity allows the system to better extract the salient feature in complex amplitude-modulated signals. Accepted: 9 January 1999  相似文献   

15.
The effect of auditory cortex blockade on response patterns of parietal association cortex neurons responding to different frequency tones was investigated in the cat. Blockade was produced by two methods: bilateral isolation and application of a 6% Nembutal solution to the auditory cortex surface. Frequency threshold curves were plotted for all test neurons. The majority of test neurons (84%) displayed one or two characteristic frequencies before blockade, as against only 63% of all neurons responding following blockade. Changes also affect the range of frequencies at which the cells could respond. Virtually all test neurons responded to application of a broad spectrum of frequencies under normal conditions. After blockade of the auditory cortex 69% of neurons no longer responded to tones above 8–10 kHz. This would suggest that mainly information on high frequency tones is transmitted via the auditory cortex. The question of where acoustic information for parietal association cortex neurons mostly originates is also discussed; association thalamic nuclei are thought to be the main source.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 354–360, May–June, 1986.  相似文献   

16.
Experiments on bats using the technique of anterograde and retrograde horseradish peroxidase transport showed that neurons of the superior olivary complex and inferior colliculus responding specifically to amplitude-modulated ultrasonic stimuli have projections to the oral reticular nucleus of the pons. Neurons of this part of the reticular formation respond to presentation of amplitude-modulated stimuli by a synchronization response, like neurons of specific auditory formations. It is concluded that the flow of action potentials from neurons coding amplitude modulation of the stimulus at the superio olivary and inferior collicular levels spreads outside the auditory system.A. A. Ukhtomskii Physiological Research Institute. A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 800–807, November–December, 1984.  相似文献   

17.
To form a coherent percept of the environment, our brain combines information from different senses. Such multisensory integration occurs in higher association cortices; but supposedly, it also occurs in early sensory areas. Confirming the latter hypothesis, we unequivocally demonstrate supra-additive integration of touch and sound stimulation at the second stage of the auditory cortex. Using high-resolution fMRI of the macaque monkey, we quantified the integration of auditory broad-band noise and tactile stimulation of hand and foot in anaesthetized animals. Integration was found posterior to and along the lateral side of the primary auditory cortex in the caudal auditory belt. Integration was stronger for temporally coincident stimuli and obeyed the principle of inverse effectiveness: greater enhancement for less effective stimuli. These findings demonstrates that multisensory integration occurs early and close to primary sensory areas and--because it occurs in anaesthetized animals--suggests that this integration is mediated by preattentive bottom-up mechanisms.  相似文献   

18.
Hens with bilateral ablations in the hyperstriatal complex were compared with birds with bilateral ablations in the posterior telencephalon and sham-operated controls with regard to their behaviour in their home pens, exploratory behavior and their responses to (1) a simulated aerial predator, (2) a startling stimulus and (3) an auditory stimulus. Ablations involving the ventral hyperstriatum made the birds less reactive to frightening stimuli while ablations in the posterior telencephalon resulted in the bird “freezing” in the experimental situations.  相似文献   

19.
Using retrograde axonal transport of horseradish peroxidase, studies have been made on the thalamic projections in the anterior and posterior parts of the limbic cortex with special reference to exterosensory system projections (visual, auditory and somatic). Projections of the retinorecipient nuclei of the anterior hypothalamus and classic thalamic visual relays (n. geniculatus lateralis dorsalis, n. lateralis posterior, pretectum) were found in the anterior and posterior limbic cortex. There are also inputs from the thalamic relays of the auditory (n. geniculatus medialis) and somatic (n. ventralis posterior) systems in the posterior limbic cortex The data obtained indicate: 1) that sensory supply of the limbic cortex in rats may be realized via direct pathways from sensory thalamic relays; 2) that thalamic sensory supply of the anterior limbic cortex differs from that of the posterior one. In the former, projections of the thalamic relays of the visual, auditory and somatic systems were found, whereas in the posterior cortex only visual system is presented. Topographic organization of the thalamic nuclear areas sending afferents to the anterior limbic cortex differs from that of the posterior limbic cortex.  相似文献   

20.
Monkeys with lesions restricted to two anatomically distinct regions of the dorsolateral frontal cortex were tested on a novel task that was developed to assess memory for the order of occurrence of stimuli. Monkeys with bilateral lesions of the mid-dorsolateral frontal cortex (cytoarchitectonic areas 46 and 9) were severely impaired, whereas monkeys with lesions of the posterior region of the dorsolateral frontal cortex (area 8 and rostral area 6) performed as well as the normal control animals. These results show that the primate mid-dorsolateral frontal cortex is a critical component of a neural circuit underlying the monitoring of the serial order of stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号