首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemokine CXCL12 promotes T lymphocyte adhesion mediated by the integrin alpha4beta1. CXCL12 activates the GTPase Rac, as well as Vav1, a guanine-nucleotide exchange factor for Rac, concomitant with up-regulation of alpha4beta1-dependent adhesion. Inhibition of CXCL12-promoted Rac and Vav1 activation by transfection of dominant negative Rac or Vav1 forms, or by transfection of their siRNA, remarkably impaired the increase in T lymphocyte attachment to alpha4beta1 ligands in response to this chemokine. Importantly, inhibition of Vav1 expression by RNA interference resulted in a blockade of Rac activation in response to CXCL12. Adhesions in flow chambers and soluble binding assays using these transfectants indicated that initial ligand binding and adhesion strengthening mediated by alpha4beta1 were dependent on Vav1 and Rac activation by CXCL12. Finally, CXCL12-promoted T-cell transendothelial migration involving alpha4beta1-mediated adhesion was notably inhibited by expression of dominant negative Vav1 and Rac. These results indicate that activation of Vav1-Rac signaling pathway by CXCL12 represents an important inside-out event controlling efficient up-regulation of alpha4beta1-dependent T lymphocyte adhesion.  相似文献   

2.
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Calpha (PKCalpha) and its subsequent interaction with beta(1) integrin since disruption of PKCalpha binding to beta(1) integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCalpha leading to its association with beta(1) integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.  相似文献   

3.
Rapid activation of integrins in response to chemokine-induced signaling serves as a basis for leukocyte arrest on inflamed endothelium. Current models of integrin activation include increased affinity for ligand, molecular extension, and others. In this study, using real-time fluorescence resonance energy transfer to assess alpha(4)beta(1) integrin conformational unbending and fluorescent ligand binding to assess affinity, we report at least four receptor states with independent regulation of affinity and unbending. Moreover, kinetic analysis of chemokine-induced integrin conformational unbending and ligand-binding affinity revealed conditions under which the affinity change was transient whereas the unbending was sustained. In a VLA-4/VCAM-1-specific myeloid cell adhesion model system, changes in the affinity of the VLA-4-binding pocket were reflected in rapid cell aggregation and disaggregation. However, the initial rate of cell aggregation increased 9-fold upon activation, of which only 2.5-fold was attributable to the increased affinity of the binding pocket. These data show that independent regulation of affinity and conformational unbending represents a novel and fundamental mechanism for regulation of integrin-dependent adhesion in which the increased affinity appears to account primarily for the increasing lifetime of the alpha(4)beta(1) integrin/VCAM-1 bond, whereas the unbending accounts for the increased capture efficiency.  相似文献   

4.
The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.  相似文献   

5.
Laminin-5 is an important constituent of the basal lamina. The receptors for laminin-5, the integrins alpha3beta1 and alpha6beta4, have been associated with epithelial wound migration and carcinoma invasion. The signal transduction mechanisms that regulate these integrins are not well understood. We report here that the small GTPase Rap1 regulates the adhesion of a number of cell lines to various extracellular matrix proteins including laminin-5. cAMP also mediates cell adhesion and spreading on laminin-5, a process that is independent of protein kinase A but rather dependent on Epac1, a cAMP-dependent exchange factor for Rap. Interestingly, although both alpha3beta1 and alpha6beta4 mediate adhesion to laminin-5, only alpha3beta1-dependent adhesion is dependent on Rap1. These results provide evidence for a function of the cAMP-Epac-Rap1 pathway in cell adhesion and spreading on different extracellular matrix proteins. They also define different roles for the laminin-binding integrins in regulated cell adhesion and subsequent cell spreading.  相似文献   

6.
Neural stem cells are capable of differentiating into three major neural cell types, but the underlying molecular mechanisms remain unclear. Here, we investigated the mechanism by which integrin beta4 modulates mouse neural stem cell differentiation in vitro. Inhibition of endogenous integrin beta4 by RNA interference inhibited the cell differentiation and the expression of fibroblast growth factor receptor 2 but not fibroblast growth factor receptor 1 or fibroblast growth factor receptor 3. Overexpression of integrin beta4 in neural stem cells promoted neural stem cell differentiation. Furthermore, integrin beta4-induced differentiation of neural stem cells was attenuated by SU5402, the inhibitor of fibroblast growth factor receptors. Finally, we investigated the role of integrin beta4 in neural stem cell survival: knockdown of integrin beta4 did not affect survival or apoptosis of neural stem cells. These data provide evidence that integrin beta4 promotes differentiation of mouse neural stem cells in vitro possibly through fibroblast growth factor receptor 2.  相似文献   

7.
We have recently reported the attachment and spreading of human umbilical vein endothelial cells (HUVECs) upon substrates containing covalently grafted Arg-Glu-Asp-Val (REDV) peptide (Hubbell, J. A., Massia, S. P., Desai, N. P., and Drumheller, P. D. (1991) Bio/Technology 9, 568-572). This peptide has been reported to be the minimal active sequence within the CS5 site of the alternatively spliced type III connecting segment (IIICS) region of fibronectin, and the integrin alpha 4 beta 1 has been identified as the receptor on melanoma cells for this site. The integrin alpha 4 beta 1 has also been identified as the receptor for the CS1 site in the IIICS region on cells of neural crest origin, melanoma cells, lymphocytes, and hematopoietic stem cells. In this study, we demonstrate that this integrin also serves as a receptor on HUVECs for the peptide REDV from the CS5 site. The alpha 4 subunit was shown to be expressed upon HUVEC membranes by whole-cell enzyme-linked immunosorbent assay. Antifunctional antibodies directed against integrin subunits alpha 4 and beta 1 inhibited cell adhesion on REDV-grafted substrates, but not on RGD-grafted substrates. The alpha 4 subunit localized into fibrillar structures within spread cells on the REDV-grafted substrates, but not within spread cells on RGD-grafted substrates. Two proteins (144 and 120 kDa) were isolated from HUVEC extracts by REDV ligand affinity chromatography and were demonstrated by immunoprecipitation and Western blot to be the integrin subunits alpha 4 (144 kDa) and beta 1 (120 kDa); furthermore, the immunoprecipitation analyses demonstrated that the subunits formed a complex. HUVEC binding to REDV-grafted substrates was inhibited by both soluble REDV and RGD, demonstrating that adhesion was biospecific and that the REDV peptide is RGD-like. In this report we demonstrate for the first time that alpha 4 is present in the endothelial cell membrane, in contrast to previous reports by others, and that integrin alpha 4 beta 1 is the receptor for REDV-mediated adhesion to the IIICS region of region of plasma fibronectin.  相似文献   

8.
Fibrillins are the major glycoprotein components of microfibrils that form a template for tropoelastin during elastic fibrillogenesis. We have examined cell adhesion to assembled purified microfibrils, and its molecular basis. Human dermal fibroblasts exhibited Arg-Gly-Asp and cation-dependent adhesion to microfibrils and recombinant fibrillin-1 protein fragments. Strong integrin alpha 5 beta 1 interactions with fibrillin ligands were identified, but integrin alpha v beta 3 also contributed to cell adhesion. Fluorescence-activated cell sorting analysis confirmed the presence of abundant alpha 5 beta 1 and some alpha v beta 3 receptors on these cells. Adhesion to microfibrils and to Arg-Gly-Asp containing fibrillin-1 protein fragments induced signaling events that led to cell spreading, altered cytoskeletal organization, and enhanced extracellular fibrillin-1 deposition. Differences in cell shape when plated on fibrillin or fibronectin implied substrate-specific alpha 5 beta 1-mediated cellular responses. An Arg-Gly-Asp-independent cell adhesion sequence was also identified within fibrillin-1. Adhesion and spreading of smooth muscle cells on fibrillin ligands was enhanced by antibody-induced beta1 integrin activation. A375-SM melanoma cells bound Arg-Gly-Asp-containing fibrillin-1 protein fragments mainly through alpha v beta 3, whereas HT1080 cells used mainly alpha 5 beta 1. This study has shown that fibrillin microfibrils mediate cell adhesion, that alpha 5 beta 1 and alpha v beta 3 are both important but cell-specific fibrillin-1 receptors, and that cellular interactions with fibrillin-1 influence cell behavior.  相似文献   

9.
Alpha4beta1 integrin affinity changes govern cell adhesion   总被引:3,自引:0,他引:3  
Integrin alpha4beta1 is a receptor for vascular cell adhesion molecule-1 and fibronectin. It is important in lymphopoiesis, inflammatory recruitment of leukocytes, and other situations that require cell adhesion to the vascular endothelium. The avidity of the cells expressing alpha4beta1 integrin can be rapidly changed by chemokines and chemoattractants. Different mechanisms, including changes in the number of interacting molecules due to the alteration of the receptor topology or changes in the affinity of the individual bonds, have been proposed to explain the nature of these fast changes in avidity. Recently, we described a fluorescent LDV-containing small molecule, which we used to monitor the affinity changes on live cells in real time (Chigaev, A., Blenc, A. M., Braaten, J. V., Kumaraswamy, N., Kepley, C. L., Andrews, R. P., Oliver, J. M., Edwards, B. S., Prossnitz, E. R., Larson, R. S. et al. (2001) J. Biol. Chem. 276, 48670-48678). Here we show that the affinity of the small molecule probe as well as the native ligand vascular cell adhesion molecule-1 varies in parallel when the integrin is modulated with divalent cations and that the affinity modulation leads to the changes in cell avidity. Using formyl peptide receptor-transfected U937 cells, we further show that the time course of avidity changes in response to the receptor activation coincides with the time course of the affinity changes. Taken together, these data are consistent with the idea that affinity regulation is a major factor that governs the avidity of cell adhesion mediated by the alpha4 integrin.  相似文献   

10.
Cell matrix interactions play a critical role in hepatic development and regeneration after acute injury. These interactions are mediated by transmembrane receptors belonging mainly to the integrin family. We have tried to assess the role of divalent cations in mediating attachment of hepatocytes to matrix proteins like collagen IV (Col IV) and laminin (Ln). The three cations examined viz. Ca2+, Mg2+ and Mn2+ showed attachment promoting activity. Since alpha1beta1 integrin is a common receptor for col IV and LN in liver, the effect of cations in its binding to these matrix proteins was studied. Although cations in general enhanced the binding, different cations exhibited differential effect in promoting the binding for different ligands. Mg2+ ions were more effective in promoting the binding of alpha1beta1 integrin to col IV but Ca2+ proved to be more effective one for Ln. Kinetic analysis of binding in dot blot assays using different concentrations of cations showed that while Mg2+ was active at low concentrations Ca2+ and Mn2+ promoted the binding more at higher concentrations. Absence of competitive effect in binding studies showed that they bind at different sites on the receptor. Differential effects of cations in promoting the binding of alpha1beta1 integrin to Col IV and Ln suggest that changes in level of diffusible cations can modulate affinity of the common receptor alpha1beta1 integrin to its ligands and can influence adhesion of hepatic cells to different matrix proteins during hepatic development and regeneration.  相似文献   

11.
12.
alpha2beta1 integrin, CD36, and GP VI have all been implicated in platelet-collagen adhesive interactions. We have investigated the role of these glycoproteins on activation of the GP IIb-IIIa complex induced by platelet adhesion to type I fibrillar and monomeric collagen under static conditions. In the presence of Mg2+, platelet adhesion to fibrillar collagen induced activation of the GP IIb-IIIa complex and complete spreading. Anti-alpha2beta1 integrin and anti-GP VI antibodies inhibited the activation of the GP IIb-IIIa complex by about 40 and 50%, respectively, at 60 min although minimal inhibitory effects on adhesion were seen. Platelet spreading was markedly reduced by anti-alpha2beta1 integrin antibody. The combination of anti-alpha2beta1 integrin with anti-GP VI antibody completely inhibited both platelet adhesion and activation of the GP IIb-IIIa complex. Anti-CD36 antibody had no significant effects on platelet adhesion, spreading, and the activation of the GP IIb-IIIa complex at 60 min. Aspirin and the thromboxane A2 receptor antagonist SQ29548 inhibited activation of the GP IIb-IIIa complex about 30% but had minimal inhibitory effect on adhesion. In the absence of Mg2+, there was significant activation of the GP IIb-IIIa complex but minimal spreading was observed. Anti-GP VI antibody completely inhibited adhesion whereas no effect was observed with anti-alpha2beta1 integrin antibody. Anti-CD36 antibody partially inhibited both adhesion and the activation of the GP IIb-IIIa complex. Platelet adhesion to monomeric collagen, which requires Mg2+ and is exclusively mediated by alpha2beta1 integrin, resulted in partial activation of the GPIIb-IIIa complex and spreading. No significant effects were observed by anti-CD36 and anti-GP VI antibodies. These results suggest that both alpha2beta1 integrin and GP VI are involved in inside-out signaling leading to activation of the GP IIb-IIIa complex after platelet adhesion to collagen and generation of thromboxane A2 may further enhance expression of activated GP IIb-IIIa complexes.  相似文献   

13.
EMILIN-1 (Elastin Microfibril Interface Located ProteIN), the prototype of the EMILIN family, consists of a cysteine-rich domain (EMI domain) at the N terminus, an extended region with a high potential coiled-coil structure, a short collagenous stalk, and a self-interacting globular gC1q-l domain. EMILIN-1 is an adhesive extracellular matrix constituent associated with elastic fibers, detected also in the proximity of cell surfaces. To localize the cell attachment site(s), monoclonal antibodies (mAbs) against EMILIN-1 or the gC1q-1 domain were used to inhibit cell attachment to EMILIN-1. Thus, one mAb mapping to the gC1q-1 domain caused complete inhibition of cell attachment. EMILIN-1 and gC1q-1 displayed a comparable dose-dependent ability to promote cell adhesion. Adhesion kinetics was similar to that of fibronectin (FN), reaching the maximum level of attachment at 20 min, but in the absence of cations adhesion was negligible. The relative adhesion strength to detach 50% of the cells was similar for EMILIN-1 and gC1q-1 (250-270 x g) but lower than that for FN (>500). Cell adhesion to EMILIN-1 or gC1q-1 was completely blocked by a function-blocking beta(1) integrin subunit mAb. In contrast, adhesion to the complement C1q component was totally unaffected. Among the various function-blocking mAbs against the alpha integrin subunits only the anti-alpha(4) fully abrogated cell adhesion to gC1q-1 and up to 70% to EMILIN-1. Furthermore, only K562 cells transfected with the alpha(4) integrin chain, but not wild type K562, were able to adhere to EMILIN-1 and were specifically inhibited by anti-alpha(4) function-blocking mAb. Finally, cells attached to EMILIN-1 or gC1q-1, compared with cells plated on FN or vitronectin, which appeared well spread out on the substrate with prominent stress fibers and focal contacts, were much smaller with wide ruffles and a different organization status of the actin cytoskeleton along the cell periphery. This pattern was in accord with the ability of EMILIN-1 to promote cell movement.  相似文献   

14.
Thrombospondin-1 (TSP-1) is an extracellular glycoprotein that is involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. It has been hypothesized that TSP-1 provides an adhesive matrix for osteosarcoma cells. Here we present data showing that TSP-1 can promote cell substrate adhesion to U2OS and SAOS cells through the alpha 4 beta 1 integrin. The dose-dependent adhesion to TSP-1 was inhibited by anti-integrin antibodies directed against the alpha 4 or beta 1 subunit, but not by control antibodies against other integrins. To localize the potential alpha 4 beta 1-binding site within the TSP-1 molecule, the protein was subjected to limited proteolysis with chymotrypsin in the absence of calcium. The stable 70-kDa core fragment produced under these conditions promoted alpha 4 beta 1-dependent osteosarcoma cell adhesion in a manner similar to that of the intact protein. Moreover adhesion experiments with neutralizing antibodies revealed that the adhesion was totally dependent on the alpha 4 beta 1 interaction. Further blocking experiments with potential inhibitory peptides revealed that the alpha 4 beta 1-mediated adhesion was not influenced by peptides containing the RGD sequence. Attachment to the 70-kDa fragment was strongly inhibited by the CS-1 peptide, which represents the most active recognition domain for alpha 4 beta 1 integrin in fibronectin. The present data provide evidence that TSP-1 contains an alpha 4 beta 1 integrin-binding site within the 70-kDa core region.  相似文献   

15.
Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.  相似文献   

16.
Integrin adhesion receptors have been implicated in bidirectional signal transduction. The dynamic regulation of integrin affinity and avidity as well as post-ligand effects involved in outside-in signaling depends on the interaction of integrins with cytoskeletal and signaling proteins. In this study, we attempted to identify cytoplasmic binding partners of alpha(1)beta(1) integrin. We were able to show that cell adhesion to alpha(1)beta(1)-specific substrates results in the association of phospholipase Cgamma (PLCgamma) with the alpha(1)beta(1) integrin independent of PLCgamma tyrosine phosphorylation. Using peptide-binding assays, the membrane proximal sequences within the alpha(1)beta(1) integrin subunits were identified as binding sites for PLCgamma. In particular, the conserved sequence of beta(1) subunit binds the enzyme very efficiently. Because purified PLCgamma also binds the integrin peptides, binding seems to be direct. Inhibition of PLC by leads to reduced cell adhesion on alpha(1)beta(1)-specific substrates. Cells lacking the conserved domain of the alpha(1) subunit fail to respond to the PLC inhibition, indicating that this domain is necessary for PLC-dependent adhesion modulation of alpha(1)beta(1) integrin.  相似文献   

17.
Liu X  Yin D  Zhang Y  Zhao J  Zhang S  Miao J 《FEBS letters》2007,581(28):5337-5342
To understand whether integrin beta4 is involved in vascular endothelial cell (VEC) senescence, we examined integrin beta4 level changes, as well as P53 and reactive oxygen species (ROS) levels and alterations of phosphatidylcholine-specific phospholipase C (PC-PLC) activity before and after knocking-down integrin beta4 by small interfering RNA. We found integrin beta4, P53 and ROS levels increased significantly, while Ca(2+)-independent PC-PLC activity obviously decreased during VEC senescence. On the other hand, integrin beta4 down-regulation attenuated the senescence phenotype and reversed Ca(2+)-independent PC-PLC activity, and P53 and ROS levels. The data suggested that integrin beta4 might mediate VEC senescence through depressing Ca(2+)-independent PC-PLC and elevating the levels of P53 and ROS.  相似文献   

18.
Cell adhesion mediated by the integrin alpha4beta1 plays a key role in many biological processes reflecting both the number and functional significance of alpha4beta1 ligands. The lipopolysaccharide (LPS) receptor, CD14, is a GPI-linked cell surface glycoprotein with a wide range of reported functions and associations, some of which overlap with that of alpha4beta1. This overlap led us to test the specific hypothesis that alpha4beta1 and CD14 interact directly. Jurkat T cells (alpha4beta1(+)) were found to adhere to a recombinant CD14-Fc protein via alpha4beta1, whilst K562 cells (alpha4beta1(-)) did not. However, stable reexpression of the alpha4-subunit conferred this ability. The adhesion of both cell types to CD14 displayed activation state-dependent binding very similar to the interaction of alpha4beta1 with its prototypic ligand, VCAM-1. In solid-phase assays, CD14-Fc bound to affinity-purified alpha4beta1 in a dose-dependent manner that was induced by activating anti-beta1 mAbs. Finally, in related experiments, JY cells (alpha4beta7(+)) were also found to attach to CD14-Fc in an alpha4-dependent manner. In summary, CD14 is a novel ligand for alpha4beta1, exhibiting similar activation-state dependent binding characteristics as other alpha4beta1 ligands. The biological relevance of this interaction will be the subject of further studies.  相似文献   

19.
Cell adhesion mediated by the interaction between integrin alpha4beta1 and VCAM-1 is important in normal physiologic processes and in inflammatory and autoimmune disease. Numerous studies have mapped the alpha4beta1 binding sites in VCAM-1 that mediate cell adhesion; however, little is known about the regions in VCAM-1 important for regulating soluble binding. In the present study, we demonstrate that 6D VCAM-1 (an alternatively spliced isoform of VCAM-1 lacking Ig-like domain 4) binds alpha4beta1 with a higher relative affinity than does the full-length form of VCAM-1 containing 7 Ig-like extracellular domains (7D VCAM-1). In indirect binding assays, the EC50 of soluble 6D VCAM-1 binding to alpha4beta1 on Jurkat cells (in 1 mM MnCl2) was 2 x 10(-9) M, compared with 7D VCAM-1 at 11 x 10(-9) M. When used in solution to inhibit alpha4beta1 mediated cell adhesion, the IC50 of 6D VCAM-1 was 13 x 10(-9) M, compared with 7D VCAM-1 measured at 150 x 10(-9) M. Removal of Ig-like domains 4, 5, or 6, or simply substituting Asp328 in domain 4 of 7D VCAM-1 with alanine, caused increased binding of soluble 7D VCAM-1 to alpha4beta1. In contrast, cells adhered more avidly to 7D VCAM-1 under shear force, as it induced cell spreading at lower concentrations than did 6D VCAM-1. Finally, soluble 6D VCAM-1 acts as an agonist through alpha4beta1 by augmenting cell migration and inducing cell aggregation. These results indicate that the domain 4 of VCAM-1 plays a contrasting role when VCAM-1 is presented in solution or as a cell surface-expressed adhesive substrate.  相似文献   

20.
The fibronectin receptors alpha(5)beta(1) integrin and syndecan-4 cocluster in focal adhesions and coordinate cell migration by making individual contributions to the suppression of RhoA activity during matrix engagement. p190Rho-guanosine triphosphatase-activating protein (GAP) is known to inhibit RhoA during the early stages of cell spreading in an Src-dependent manner. This paper dissects the mechanisms of p190RhoGAP regulation and distinguishes the contributions of alpha(5)beta(1) integrin and syndecan-4. Matrix-induced tyrosine phosphorylation of p190RhoGAP is stimulated solely by engagement of alpha(5)beta(1) integrin and is independent of syndecan-4. Parallel engagement of syndecan-4 causes redistribution of the tyrosine-phosphorylated pool of p190RhoGAP between membrane and cytosolic fractions by a mechanism that requires direct activation of protein kinase C alpha by syndecan-4. Activation of both pathways is necessary for the efficient regulation of RhoA and, as a consequence, focal adhesion formation. Accordingly, we identify p190RhoGAP as the convergence point for adhesive signals mediated by alpha(5)beta(1) integrin and syndecan-4. This molecular mechanism explains the cooperation between extracellular matrix receptors during cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号