首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

2.
The purpose of the work was to determine whether the age-related muscle weakness diminishes older adults’ ability to use mechanisms responsible for maintaining dynamic stability after forward falls. Nine older and nine younger adults participated in this study. To analyse the capacities of the leg-extensor muscle–tendon units, all subjects performed isometric maximal voluntary plantarflexion and knee extension contractions on a dynamometer. The elongation of the gastrocnemius medialis and the vastus lateralis tendon and aponeuroses during isometric contraction was examined by ultrasonography. Recovery behaviour was determined after a sudden fall from two forward-inclined lean angles. Compared to older adults, younger adults had higher muscle strength and tendon stiffness. Younger adults created a higher margin of stability compared to older, independent of perturbation intensity. The main mechanism improving the margin of dynamic stability was the increase of the base of support. The results, further, demonstrated that the locomotion strategy employed before touchdown affects the stability of the stance phase and that muscle strength and tendon stiffness contributed significantly to stability control. We concluded that, to reduce the risk of falls, older individuals may benefit from muscle–tendon unit strengthening programs as well as from interventions exercising the mechanisms responsible for dynamic stability.  相似文献   

3.
People at risk of falling exhibit increased gait variability, which may predict future falls. However, the causal mechanisms underlying these correlations are not well known. Increased neuronal noise associated with aging likely leads to increased gait variability, which could in turn lead to increased fall risk. This paper presents a model of how changes in neuromuscular noise independently affect gait variability and probability of falling, and aims to determine the extent to which changes in gait variability directly predict fall risk. We used a dynamic walking model that incorporates a lateral step controller to maintain lateral stability. Noise was applied to this controller to approximate neuromuscular noise in humans. Noise amplitude was varied between low amplitudes that did not induce falls and high amplitudes for which the model always fell. With increases in noise amplitude, the model fell more often and after fewer steps. Gait variability increased with noise amplitude and predicted increased probability of falling. Importantly, these relationships were not linear. At either low gait variability or very high gait variability, small increases in noise and variability affected probability of falling very little. Conversely, at intermediate noise and/or variability levels, the same small increases resulted in large increases in probability of falling. Our results validate the idea that age-related increases in neuromuscular noise likely play a direct contributing role in increasing fall risk. However, neuromuscular noise remains only one of many important factors that need to be considered. These findings have important implications for fall prevention research and practice.  相似文献   

4.
Load carriage perturbs the neuromuscular system, which can be impaired due to ageing. The ability to counteract perturbations is an indicator of neuromuscular function but if the response is insufficient the risk of falls will increase. However, it is unknown how load carriage affects older adults. Fourteen older adults (65 ± 6 years) attended a single visit during which they performed 4 min of walking in 3 conditions, unloaded, stable backpack load and unstable backpack load. During each walking trial, 3-dimensional kinematics of the lower limb and trunk movements and electromyographic activity of 6 lower limb muscles were recorded. The local dynamic stability (local divergence exponents), joint angle variability and spatio-temporal variability were determined along with muscle activation magnitudes. Medio-lateral dynamic stability was lower (p = 0.018) and step width (p = 0.019) and step width variability (p = 0.015) were greater in unstable load walking and step width variability was greater in stable load walking (p = 0.009) compared to unloaded walking. However, there was no effect on joint angle variability. Unstable load carriage increased activity of the Rectus Femoris (p = 0.001) and Soleus (p = 0.043) and stable load carriage increased Rectus Femoris activity (p = 0.006). These results suggest that loaded walking alters the gait of older adults and that unstable load carriage reduces dynamic stability compared to unloaded walking. This can potentially increase the risk of falls, but also offers the potential to use unstable loads as part of fall prevention programmes.  相似文献   

5.
Several methods derived from nonlinear time series analysis have been suggested to quantify stability in human gait kinematics. One of these methods is the definition of the maximum finite time Lyapunov exponent (λ) that quantifies how the system responds to infinitesimal perturbations. However, there are fundamental limitations to the conventional definition of λ for gait kinematics. First, exponential increase in initial perturbations cannot be assumed since real-life perturbations of gait kinematics are finite sized. Second, the transitions between single and double support phase within each stride cycle define two distinct dynamical regimes that may not be captured by a single λ. The present article presents a new method to quantify intra-stride changes λ(t) in local dynamical stability and employs the method to 3D lower extremity gait kinematics in 10 healthy adults walking on a treadmill at 3 different speeds. All participants showed an intra-stride change in λ(t) in the transition between single and double support phase. The intra-stride change reflected an both a increase and decrease in λ(t) at heel strike and toe off, respectively, with increased gait speed. Furthermore, a close relationship was found between the intra-stride change in standard deviation of foot velocity in the anterior-posterior direction and the intra-stride change of the initial perturbations. The present results indicate that local dynamical stability has gait phase-dependent changes that are not identified by conventional computation of a single λ.  相似文献   

6.
The purpose of the current study was to use the margins of stability (MoS) to investigate how older adults choose between minimizing the risk of a forward fall when crossing an obstacle and the ease of maintaining forward progression during the steps taken behind the obstacle. In the current study 143 community-dwelling older adults aged between 55 and 83 years old, were divided into three age groups based on tertials of age. All participants were asked to complete five trials of obstacle walking and five trials of normal walking. For the trials of normal walking, the main difference between groups was that MoS at initial contact was lower in the older age groups. For the trials of obstacle crossing the MoS at the instants of obstacle crossing with both the leading and trailing limb became smaller with an increase in age. This result might imply that older people choose to use a strategy during obstacle crossing that results in smaller chance of falling forward if an obstacle was struck. A negative consequence of this more conservative strategy was a smaller MoS at the instants of initial contact after crossing the obstacle, thus a larger chance of a backward fall. These findings provide more insight into the regulation of stability during obstacle crossing and specifically in the differences in strategy between younger and older people, and therefore these results might be used for further research to investigate whether obstacle crossing strategies are trainable in older adults, which could be used as advisory programs aimed at fall prevention and/or engagement in an active lifestyle.  相似文献   

7.
Healthy humans display a preference for walking at a stride frequency dependent on the inertial properties of their legs. Walking at preferred stride frequency (PSF) is predicted to maximize local dynamic stability, whereby sensitivity to intrinsic perturbations arising from natural variability inherent in biological motion is minimized. Previous studies testing this prediction have employed different variability measures, but none have directly quantified local dynamic stability by computing maximum finite-time Lyapunov exponent (λMax), which quantifies the rate of divergence of nearby trajectories in state space. Here, ten healthy adults walked 45 m overground while sagittal motion of both knees was recorded via electrogoniometers. An auditory metronome prescribed 7 different frequencies relative to each individual's PSF (PSF; ±5, ±10, ±15 strides/min). Stride frequencies were performed under both freely adopted speed (FS) and controlled speed (CS: set at the speed of PSF trials) conditions. Local dynamic stability was maximal (λMax was minimal) at the PSF, becoming less stable for higher and lower stride frequencies. This occurred under both FS and CS conditions, although controlling speed further reduced local dynamic stability at non-preferred stride frequencies. In contrast, measures of variability revealed effects of stride frequency and speed conditions that were distinct from λMax. In particular, movement regularity computed by approximate entropy (ApEn) increased for slower walking speeds, appearing to depend on speed rather than stride frequency. The cadence freely adopted by humans has the benefit of maximizing local dynamic stability, which can be interpreted as humans tuning to their resonant frequency of walking.  相似文献   

8.
Peripheral sensory feedback is believed to contribute significantly to maintaining walking stability. Patients with diabetic peripheral neuropathy have a greatly increased risk of falling. Previously, we demonstrated that slower walking speeds in neuropathic patients lead to improved local dynamic stability. However, all subjects exhibited significant local instability during walking, even though no subject fell or stumbled during testing. The present study was conducted to determine if and how significant changes in peripheral sensation and walking speed affect orbital stability during walking. Trunk and lower extremity kinematics were examined from two prior experiments that compared patients with significant neuropathy to healthy controls and walking at multiple different speeds in young healthy subjects. Maximum Floquet multipliers were computed for each time series to quantify the orbital stability of these movements. All subjects exhibited orbitally stable walking kinematics, even though these same kinematics were previously shown to be locally unstable. Differences in orbital stability between neuropathic and control subjects were small and, with the exception of knee joint movements (p=0.001), not statistically significant (0.380p0.946). Differences in knee orbital stability were not mediated by differences in walking speed. This was supported by our finding that although orbital stability improved slightly with slower walking speeds, the correlations between walking speed and orbital stability were generally weak (r(2)16.7%). Thus, neuropathic patients do not gain improved orbital stability as a result of slowing down and do not experience any loss of orbital stability because of their sensory deficits.  相似文献   

9.
Dynamic stability of passive dynamic walking on an irregular surface   总被引:1,自引:0,他引:1  
Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously "correct" way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model's global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., "local") perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r(2)=2.43%; p=0.280) or long-term local instability (r(2)=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually "fell" during any of our simulations. Conversely, the variability of the walker's kinematics increased exponentially (r(2)>or=99.6%; p<0.001) and short-term local instability increased linearly (r(2)=88.1%; p<0.001). These measures thus predicted the increased risk of falling exhibited by the model. For all simulated conditions, the walker remained orbitally stable, while exhibiting substantial local instability. This was because very small initial perturbations diverged away from the limit cycle, while larger initial perturbations converged toward the limit cycle. These results provide insight into how these different proposed measures of walking stability are related to each other and to risk of falling.  相似文献   

10.
Falls among the older population can severely restrict their functional mobility and even cause death. Therefore, it is crucial to understand the mechanisms and conditions that cause falls, for which it is important to develop a predictive model of falls. One critical quantity for postural instability detection and prediction is the instantaneous stability of quiet upright stance based on motion data. However, well-established measures in the field of motor control that quantify overall postural stability using center-of-pressure (COP) or center-of-mass (COM) fluctuations are inadequate predictors of instantaneous stability. For this reason, 2D COP/COM virtual-time-to-contact (VTC) is investigated to detect the postural stability deficits of healthy older people compared to young adults. VTC predicts the temporal safety margin to the functional stability boundary ( =  limits of the region of feasible COP or COM displacement) and, therefore, provides an index of the risk of losing postural stability. The spatial directions with increased instability were also determined using quantities of VTC that have not previously been considered. Further, Lempel-Ziv-Complexity (LZC), a measure suitable for on-line monitoring of stability/instability, was applied to explore the temporal structure or complexity of VTC and the predictability of future postural instability based on previous behavior. These features were examined as a function of age, vision and different load weighting on the legs. The primary findings showed that for old adults the stability boundary was contracted and VTC reduced. Furthermore, the complexity decreased with aging and the direction with highest postural instability also changed in aging compared to the young adults. The findings reveal the sensitivity of the time dependent properties of 2D VTC to the detection of postural instability in aging, availability of visual information and postural stance and potential applicability as a predictive model of postural instability during upright stance.  相似文献   

11.
Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual) walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1–50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the lowest minimum detectable change values, supporting their use for tracking changes over multiple testing sessions. The between-session reliability and minimum detectable change values reported here provide an objective means for interpreting changes in temporal-spatial, kinematic variability, and dynamic stability measures during perturbed walking which may assist in identifying instability.  相似文献   

12.
Aging-associated fall-risk assessment is crucial for fall prevention. Thus, this study aimed to develop a prognostic model to predict fall-risk following an unexpected over-ground slip perturbation based on normal gait pattern in healthy older adults. 112 healthy older adults who experienced a novel slip in a safe laboratory environment were included. Their slip trial and natural walking trial immediately prior to it were analyzed. To identify the best fall-risk predictive model, gait related variables including step length, segment angles, center of mass state, and ground reaction force (GRF) were determined and inputted into a stepwise logistic regression. The optimal slip-induced fall prediction model was based on the right thigh angle at slipping foot touchdown (TD), the maximum GRF of the slipping limb after TD, and the momentum change from TD to recovery foot liftoff (LO), with an overall prediction accuracy of 75.9%, predicting 74.5% of falls (sensitivity) and 77.2% of recoveries (specificity). Conversely, a model based on clinical and demographic measures predicted 78.2% of falls and 47.4% of recoveries, resulting in a much lower overall accuracy of 62.5%. The fall-risk model based on normal gait pattern which was developed for slip-induced perturbations in healthy older adults was able to provide a high predictive accuracy. This information could provide insight about the ideal normal gait measures which could be used to contribute towards development of therapeutic strategies related to dynamic balance and fall prevention to enhance preventive interventions in populations with high-risk for slip-induced falls.  相似文献   

13.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds (p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed (p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior (p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns (p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines.  相似文献   

14.
The present article investigates gait stability of healthy older persons during weight transfer. Ten healthy older persons and ten younger persons walked 10 min each on a treadmill at 3 different gait speeds. The intra-stride change in gait stability was defined by the local divergence exponent λ(t) estimated by a newly developed method. The intra-stride changes in λ(t) during weight transfer were identified by separating each stride into a single and double support phase. The intra-stride changes in λ(t) were also compared to changes in the variation of the gait kinematics, i.e., SD(t). The healthy older persons walked at the same preferred walking speed as the younger persons. However, they exhibited significantly larger λ(t) (p<0.001) during weight transfer in the double support phase. Local divergence was closely related to intra-stride changes in SD(t) of the feet in the anterior-posterior direction. Furthermore, a high correlation was found between local divergence and the variation in step length and step width for both older (R>0.67, p<0.05) and younger persons (R>0.67, p<0.05). The present results indicate that the gait kinematics of older adults are more dynamical unstable during the weight transfer compared to younger persons. Furthermore, a close relationship exists between intra-stride changes in dynamical stability and variation in step length and step width. Further work will validate the results of the present study using real-life perturbations of the gait kinematics of both younger and older adults.  相似文献   

15.
This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity.  相似文献   

16.
The purpose of this study was to examine the postural corrections related to components of dynamic stability aimed to increase our understanding of successful postural control among the elderly population. This was done by comparing balance behaviour of older adults who were able to recover stability (stable) and others who failed to regain stability (unstable) with a single step after a forward fall. Thirty-eight old male adults (64+/-3yr, 176+/-6cm, 78.5+/-7.8kg) had to recover balance after a sudden induced forward fall. All participants performed maximal isometric ankle plantarflexion and knee extension contractions on a dynamometer. The elongation of the gastrocnemius medialis and the vastus lateralis tendon and aponeuroses during isometric contraction was examined by ultrasonography. There were no differences in leg-extensor muscle strength or tendon stiffness between the two groups showing that the muscle tendon capacities may not be the reason for the observed differences in dynamic stability control. The unstable participants created a higher horizontal ground reaction push-off force of the support limb in the second part ( approximately 260ms after release) of the phase until touchdown leading to an unstable body position at touchdown. The results indicate deficits in the way to achieve balance related to mechanisms responsible for dynamic stability control within the elderly population.  相似文献   

17.
The purpose of the current study was to investigate whether adaptations of stride length, stride frequency, and walking speed, independently influence local dynamic stability and the size of the medio-lateral and backward margins of stability during walking. Nine healthy subjects walked 25 trials on a treadmill at different combinations of stride frequency, stride length, and consequently at different walking speeds. Visual feedback about the required and the actual combination of stride frequency and stride length was given during the trials. Generalized Estimating Equations were used to investigate the independent contribution of stride length, stride frequency, and walking speed on the measures of gait stability. Increasing stride frequency was found to enhance medio-lateral margins of stability. Backward margins of stability became larger as stride length decreased or walking speed increased. For local dynamic stability no significant effects of stride frequency, stride length or walking speed were found. We conclude that adaptations in stride frequency, stride length and/or walking speed can result in an increase of the medio-lateral and backward margins of stability, while these adaptations do not seem to affect local dynamic stability. Gait training focusing on the observed stepping strategies to enhance margins of stability might be a useful contribution to programs aimed at fall prevention.  相似文献   

18.
Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and protective stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with ample limb support, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts.  相似文献   

19.
BackgroundThe prevention of falls among older people is a major public health challenge. Exercises that challenge balance are recognized as an efficacious fall prevention strategy. Given that small-scale trials have indicated that diverse dance styles can improve balance and gait of older adults, two of the strongest risk factors for falls in older people, this study aimed to determine whether social dance is effective in i) reducing the number of falls and ii) improving physical and cognitive fall-related risk factors.ConclusionsSocial dancing did not prevent falls or their associated risk factors among these retirement villages'' residents. Modified dance programmes that contain "training elements" to better approximate structured exercise programs, targeted at low and high-risk participants, warrant investigation.

Trial Registration

The Australian New Zealand Clinical Trials Registry ACTRN12612000889853  相似文献   

20.
Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, "orbital stability" is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, "local stability" is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p = 0.040) and vertical (p = 0.038) trunk accelerations and ankle joint kinematics (p = 0.002). However, these improvements were not exhibited by all subjects (p < or = 0.012 for subject x condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2 < or = 19.8%; p > or = 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号